
MicroEMACS
Full Screen Text Editor
Reference Manual

Version 3.10
March 19, 1989

(C)opyright 1988, 1989 by Daniel M. Lawrence
Reference Manual (C)opyright 1988, 1989

by

Brian Straight and Daniel M. Lawrence

All Rights Reserved

Introduction

MicroEMACS is a tool for creating and changing documents,
programs, and other text files. It is both relatively easy for
the novice to use, but also very powerful in the hands of an
expert. MicroEMACS can be extensively customized for the needs of
the individual user.

MicroEMACS allows several files to be edited at the same
time. The screen can be split into different windows, and text
may be moved freely from one window to the next. Depending on
the type of file being edited, MicroEMACS can change how it
behaves to make editing simple. Editing standard text files,
program files and word processing documents are all possible at
the same time.

There are extensive capabilities to make word processing and
editing easier. These include commands for string searching and
replacing, paragraph reformatting and deleting, automatic word
wrapping, word move and deletes, easy case controlling, and
automatic word counts.

For complex and repetitive editing tasks editing macros can
be written. These macros allow the user a great degree of
flexibility in determining how MicroEMACS behaves. Also, any and
all the commands can be used by any keystroke by changing, or
rebinding, what commands various keys invoke.

Special features are also available to perform a diverse set
of operations such as file encryption, automatic backup file
generation, entabbing and detabbing lines, executing operating
system commands and filtering of text through other programs
(like SORT to allow sorting text).

History
EMACS was originally a text editor written by Richard

Stallman at MIT in the early 1970s for Digital Equipment
computers. Various versions, rewrites and clones have made an
appearance since.

This version of MicroEMACS is derived from code written by
Dave G. Conroy in 1985. Later modifications were performed by
Steve Wilhite and George Jones. In December of 1985 Daniel
Lawrence picked up the then current source (version 2.0) and made

extensive modifications and additions to it over the course of
the next three years. Updates and support for the current
version are still available.Commercial support and usage licenses
are also available. The current program author can be contacted
by writing to:

USMAIL: Daniel Lawrence
617 New York St
Lafayette, IN 47901

UUCP:pur-ee!pur-phy!j.cc.purdue.edu!nwd
ARPA: nwd@j.cc.purdue.edu
FIDO: Opus 201/10 The Programmer's Room

(317) 742-5533

Credits
Many people have been involved in creating this software

and we wish to credit some of them here. Dave Conroy, of course,
wrote the very first version of MicroEMACS, and it is a credit to
his clean coding that so much work was able to be done to expand
it. John Gamble is responsible for writing the MAGIC mode search
routines, and for maintaining all the search code. Dana Hoggatt
supplied the encryption routines for encrypt mode and continues
to answer really hard questions about MSDOS and UNIX. Jeff
Lomicka wrote the appendix on DEC VMS and has supplied a lot of
code to support VMS and the ATARI 1040ST versions. Curtis Smith
wrote the original VMS code and help support the Commodore
AMIGA. Also Lance Jones has done a lot of work on the AMIGA
code. Professor Suresh Konda at Purdue University has put a lot
of effort into writing complex macros and finding all the bugs in
the macro language before anyone else does.

As to people sending source code and text translations over
computer networks like USENET and ARPAnet, there are simply more
than can be listed here. [The comments in the edit history in
the main.c file mention each and the piece they contributed].
All these people should be thanked for the hard work they have
put into MicroEMACS.

Daniel M. Lawrence

Chapter 1
Basic Concepts

The current version of MicroEMACS is 3.10 (Third major re-
write, tenth public release), and for the rest of this
document, we shall simply refer to this version as "EMACS". Any
modifications for later versions will be in the file README on
the MicroEMACS distribution disk.

1.1 Keys and the Keyboard

Many times throughout this manual we will be talking about
commands and the keys on the keyboard needed to use them. There
are a number of "special" keys which can be used and are listed
here:

<NL>NewLine which is also called RETURN or ENTER,this key is
used to end different commands.

^The control key can be used before any alphabetic character and
some symbols. For example, ^C means to hold down the <CONTROL>
key and type the C key at the same time.

^XThe CONTROL-X key is used at the beginning of many different
commands.

META or M-This is a special EMACS key used to begin many commands
as well. This key is pressed and then released before typing the
next character. On most systems, this is the <ESC> key, but
it can be changed. (consult appendix E to learn what key is
used for META on your computer).

Whenever a command is described, the manual will list the
actual keystrokes needed to execute it in boldface using the
above conventions, and also the name of the command in italics.

1.2 Getting Started

In order to use EMACS, you must call it up from your system
or computer's command prompt. On UNIX and MSDOS machines, just
type "emacs" from the main command prompt and follow it with the
<RETURN> or <ENTER> key (we will refer to this key as <NL> for
"new-line" for the remainder of this manual). On the Macintosh,
the Amiga, the ATARI ST and other icon based operating
systems, double click on the uEMACS icon. Shortly after this, a
screen similar to the one below should appear.

1.3 Parts and Pieces

The screen is divided into a number of areas or windows. On
some systems the top window contains a function list of unshifted
and shifted function keys. We will discuss these keys later.
Below them is an EMACS mode line which, as we will see, informs
you of the present mode of operation of the editor--for example
"(WRAP)" if you set EMACS to wrap at the end of each line. Under
the mode line is the text window where text appears and is
manipulated. Since each window has its own mode line, below the
text window is it's mode line. The last line of the screen is
the command line where
EMACS takes commands and reports on what it is doing.

===
==============
 f1 search-> f2 <-search | MicroEMACS: Text
Editor
 f3 hunt-> f4 <-hunt |
 f5 fkeys f6 help | Available function key
Pages include:
 f7 nxt wind f8 pg[] | WORD BOX EMACS
PASCAL C
 f9 save f10 exit | [use the f8 key to load
Pages]
===
==============
 MicroEMACS 3.10 () Function Keys
===
==============

===
==============
 ---- MicroEMACS 3.10 () -- Main
 --
===
==============

Fig 1: EMACS screen on an IBM-PC

1.4 Entering Text

Entering text in EMACS is simple. Type the following
sentence fragment:

Fang Rock lighthouse, center of a series of mysterious and

The text is displayed at the top of the text window. Now
type:

terrifying events at the turn of the century

Notice that some of your text has disappeared off the left side
of the screen. Don't panic--your text is safe!!! You've just
discovered that EMACS doesn't "wrap" text to the next line like
most word processors unless you hit <NL>. But since EMACS is
used for both word processing, and text editing, it has a bit of
a dual personality. You can change the way it works by setting
various modes. In this case, you need to set WRAP mode, using
the add-mode command, by typing ^XM. The command line at the
base of the screen will prompt you for the mode you wish to add.
Type wrap followed by the <NL> key and any text you now enter
will be wrapped. However, the command doesn't wrap text already
entered. To get rid of the long line, press and hold down the
<BACKSPACE> key until the line is gone. Now type in the words
you deleted, watch how EMACS goes down to the next line at the
right time. (In some versions of EMACS, WRAP is a default mode in
which case you don't have to worry about the instructions
relating to adding this mode.)

Now let's type a longer insert. Hit <NL> a couple of times
to tab down from the text you just entered. Now type the
following paragraphs. Press <NL> twice to indicate a paragraph

break.

Fang Rock lighthouse, center of a series of mysterious and
terrifying events at the turn of the century, is built on a rocky
island a few miles off the Channel coast. So small is the island
that wherever you stand its rocks are wet with sea spray.

The lighthouse tower is in the center of the island. A steep
flight of steps leads to the heavy door in its base. Winding
stairs lead up to the crew room.

1.5 Basic cursor movement

Now let's practice moving around in this text.
 To
move the cursor back to the word "Winding," enter M-B previous-
word. This command moves the cursor backwards by one word at a
time. Note you have to press the key combination every time the
cursor steps back by one word. Continuously pressing META and
toggling B produces an error message. To move forward to the
word "stairs" enter M-F next-word, which moves the cursor forward
by one word at a time.

Notice that EMACS commands are usually mnemonic--F for
forward, B for backward, for example.

To move the cursor up one line, enter ^P previous-line, down one
line ^N next-line. Practice this movement by moving the cursor
to the word "terrifying" in the second line.

The cursor may also be move forward or backward in smaller
increments. To move forward by one character, enter
^F forward-character, to move backward, ^B backward-character.
EMACS also allows you to specify a number which is normally used
to tell a command to execute many times.

To repeat most commands, press META and then the number
before you enter the command. Thus, the command META 5 ^F (M-
5^F) will move the cursor forward by five characters. Try moving
around in the text by using these commands. For extra
practice, see how close you can come to the word "small" in the
first paragraph by giving an argument to thecommands listed
here.

Two other simple cursor commands that are useful to help us

move around in the text are M-N next-paragraph which moves the
cursor to the second paragraph, and M-P previous-paragraph which
moves it back to the previous paragraph.

The cursor may also be moved rapidly from one end of the
line to the other. Move the cursor to the word "few" in the
second line. Press ^A beginning-of-line. Notice the cursor
moves to the word "events" at the beginning of the line.
Pressing ^E end-of-line moves the cursor to the end of the
line.

Finally, the cursor may be moved from any point in the file
to the end or beginning of the file. Entering M-> end-of-file
moves the cursor to the end of the buffer, M-< beginning-of-file
to the first character of the file.

On the IBM-PC, the ATARI ST and many other machines, the
cursor keys can also be used to move the cursor.

Practice moving the cursor in the text until you are
comfortable with the commands we've explored in this chapter.

1.6 Saving your text

When you've finished practicing cursor movement, save your
file. Your file currently resides in a BUFFER. The buffer is a
temporary storage area for your text, and is lost when the
computer is turned off. You can save the buffer to a file by
entering ^X^S save-file. Notice that EMACS informs you that your
file has no name and will not let you save it.

To save your buffer to a file with a different name than
it's current one (which is empty), press ^X^W write-file.
EMACS will prompt you for the filename you wish to write. Enter
the name fang.txt and press return. On a micro, the drive light
will come on, and EMACS will inform you it is writing the file.
When it finishes, it will inform you of the number of lines it
has written to the disk.

Congratulations!! You've just saved your first EMACS
file!

Chapter 1 Summary

In chapter 1, you learned how to enter text, how to use
wrap mode, how to move the cursor, and to save a buffer. The
following is a table of the commands covered in this chapter and
their corresponding key bindings:

Key Binding Keystroke Effect

abort-command ^G aborts current
command

add-mode ^XM allows addition of
EMACS mode such as

WRAP

backward-character ^B moves cursor left one
 character

beginning-of-file M-< moves cursor to
beginning of file

beginning-of-line ^A moves cursor to
beginning of line

end-of-file M-> moves cursor to end
of file

end-of-line ^E moves cursor to end
of line

forward-character ^F moves cursor right
one character

next-line ^N moves cursor to next
line

next-paragraph M-N moves cursor to next
paragraph

next-word M-F moves cursor forward
one word

previous-line ^P moves cursor backward
by one line

previous-paragraph M-P moves cursor to
previous paragraph

previous-word M-B moves cursor backward
by one word

save-file ^X^S saves current buffer
to a file

write-file ^X^W save current buffer
under a new name

Chapter 2
Basic Editing--Simple Insertions and Deletions

2.1 A Word About Windows, Buffers, Screens, and Modes

In the first chapter, you learned how to create and save a
file in EMACS. Let's do some more editing on this file. Call up
emacs by typing in the following command.

 emacs fang.txt

On icon oriented systems, double click on the uEMACS icon,
usually a file dialog box of some sort will appear.

Choose FANG.TXT from the appropriate folder.

Shortly after you invoke EMACS, the text should appear on
the screen ready for you to edit. The text you are looking at
currently resides in a buffer. A buffer is a temporary area of
computer memory which is the primary unit internal to EMACS --
this is the place where EMACS goes to work. The mode line at the
bottom of the screen lists the buffer name, FANG.TXT and the
name of the file with which this buffer is associated, FANG.TXT

The computer talks to you through the use of its screen.
This screen usually has an area of 24 lines each of 80 characters
across. You can use EMACS to subdivide the screen into several
separate work areas, or windows, each of which can be 'looking
into' different files or sections of text. Using windows, you
can work on several related texts at one time, copying and
moving blocks of text between windows with ease. To keep track
of what you are editing, each window is identified by a mode line
on the last line of the window which lists the name of the buffer
which it is looking into, the file from which the text was read,
and how the text is being edited.

An EMACS mode tells EMACS how to deal with user input. As
we have already seen, the mode 'WRAP' controls how EMACS deals
with long lines (lines with over 79 characters) while the user
is typing them in. The 'VIEW' mode, allows you to read a file
without modifying it. Modes are associated with buffers and not
with files; hence, a mode needs to be explicitly set or removed
every time you edit a file. A new file read into a buffer with

a previously specified mode willbe edited under this mode. If
you use specific modes frequently, EMACS allows you to set the
modes which are used by all new buffers, called global modes.

2.2 Insertions

Your previously-saved text should look like this:

Fang Rock lighthouse, center of a series of mysterious and
terrifying events at the turn of the century, is built on a
rocky island a few miles off the Channel coast. So small is the
island that wherever you stand its rocks are wet with sea spray.

The lighthouse tower is in the center of the island. A steep
flight of steps leads to the heavy door in its base. Winding
stairs lead up to the crew room.

Let's assume you want to add a sentence in the second
paragraph after the word "base." Move the cursor until it is
on the "W" of "Winding". Now type the following:

This gives entry to the lower floor where the big steam
generator throbs steadily away, providing power for the electric
lantern.

If the line fails to wrap and you end up with a '$' sign in
the right margin, just enter M-Q fill-paragraph to reformat the
paragraph. This new command attempts to fill out a paragraph.
Long lines are divided up, and words are shuffled around to make
the paragraph look nicer.

Notice that all visible EMACS characters are self-inserting
-- all you had to do was type the characters to insert and the
existing text made space for it. With a few exceptions discussed
later, all non-printing characters
(such as control or escape sequences) are commands. To insert
spaces, simply use the space bar. Now move to the first line of
the file and type ^O open-line (Oh, not zero). You've just
learned how to insert a blank line in your text.

2.3 Deletions

EMACS offers a number of deletion options. For example,
move the cursor until it's under the period at the end of the
insertion you just did. Press the backspace key. Notice the "n"
on "lantern" disappeared. The backspace implemented on EMACS
is called a destructive backspace--it removes text immediately
before the current cursor position from the buffer. Now type ^H
delete-previous-character. Notice that the cursor moves back
and obliterates the "r"--either command will backspace the
cursor.

Type in the two letters you erased to restore your text and
move the cursor to the beginning of the buffer M-> beginning-of-
file. Move the cursor down one line to the beginning of the
first paragraph.

To delete the forward character, type ^D delete-
next-character. The "F" of "Fang" disappears. Continue to
type ^D until the whole word is erased EMACS also permits
the deletion of larger elements of text. Move the cursor to
the word "center" in the first line of text. Pressing
M-<backspace> delete-previous-word kills the word immediately
before the cursor. M-^H has the same effect.

Notice that the commands are very similar to the control
commands you used to delete individual letters. As a general
rule in EMACS, control sequences affect small areas of text,
META sequences larger areas. The word forward of the cursor
position can therefore be deleted by typing M-D delete-next-word.
Now let's take out the remainder of the first line by typing ^K
kill-to-end-of-line. You now have a blank line at the top of
your screen. Typing ^K again or ^X^O delete-blank-lines deletes
the blank line and flushes the second line to the top of the
text. Now exit EMACS by typing ^X^C exit-emacs. Notice EMACS
reminds you that you have not saved your buffer. Ignore the
warning and exit. This way you can exit EMACS without saving any
of the changes you just made.

Chapter 2 Summary

In Chapter 2, you learned about the basic 'building blocks'
of an EMACS text file--buffers, windows, and files.

Key binding Keystroke Effect

delete-previous-character ^H deletes character

immediately before
the current cursor

position

delete-next-character ^D deletes character
immediately after

current cursor
position

delete-previous-word M-^H deletes word
immediately before

current cursor
position

delete-next-word M-D deletes word
immediately after

current cursor
position

kill-to-end-of-line ^K deletes from current
cursor position to

end of line

insert-space ^C inserts a space to
right of cursor

open-line ^O inserts blank line

delete-blank-lines ^X^O removes blank line

exit-emacs ^X^C exits emacs

Chapter 3
Using Regions

3.1 Defining and Deleting a Region

At this point its time to familiarize ourselves with two
more EMACS terms--the point and the mark. The point is located
directly behind the current cursor position. The mark (as we
shall see shortly) is user defined. These two
elements together are called the current region and limit
the region of text on which EMACS performs many of its
editing functions.

Let's begin by entering some new text. Don't forget to add
wrap mode if its not set on this buffer. Start EMACS and open a
file called PUBLISH.TXT. Type in the following text:

One of the largest growth areas in personal computing is
electronic publishing. There are packages available for
practically every machine from elegantly simple programs for the
humble Commodore 64 to sophisticated professional packages for PC
and Macintosh computers.

Electronic publishing is as revolutionary in its way as the
Gutenburg press. Whereas the printing press allowed the mass
production and distribution of the written word, electronic
publishing puts the means of production in the hands of nearly
every individual. From the class magazine to the corporate
report, electronic publishing is changing the way we produce and
disseminate information.

Personal publishing greatly increases the utility of practically
every computer. Thousands of people who joined the computer
revolution of this decade only to hide their machines unused in
closets have discovered a new use for them as dedicated
publishing workstations.

Now let's do some editing. The last paragraph seems a
little out of place. To see what the document looks like
without it we can cut it from the text by moving the cursor
to the beginning of the paragraph. Enter M-<space> set-mark.
EMACS will respond with "[Mark set]". Now move the cursorto the
end of the paragraph. You have just defined a

region of text. To remove this text from the screen, type
^W kill-region. The paragraph disappears from the screen.

On further consideration, however, perhaps the paragraph we
cut wasn't so bad after all. The problem may have been one of
placement. If we could tack it on to the end of the first
paragraph it might work quite well to support and strengthen the
argument. Move the cursor to the end of the first paragraph and
enter ^Y yank. Your text should now look like this:

One of the largest growth areas in personal computing is
electronic publishing. There are packages available for
practically every machine from elegantly simple programs for the
humble Commodore 64 to sophisticated professional packages for PC
and Macintosh computers. Personal publishing greatly increases
the utility of practically every computer. Thousands of people
who joined the computer revolution of this decade only to hide
their machines unused in closets have discovered a new use for
them as dedicated publishing workstations.

Electronic publishing is as revolutionary in its way as the
Gutenburg press. Whereas the printing press allowed the mass
production and distribution of the written word, electronic
publishing puts the means of production in the hands of nearly
every individual. From the class magazine to the corporate
report, electronic publishing is changing the way we produce and
disseminate information.

3.2 Yanking a Region

The text you cut initially didn't simply just disappear, it
was cut into a buffer that retains the 'killed' text
appropriately called the kill buffer. ^Y"yanks" the text back
from this buffer into the current buffer. If you have a long line
(indicated, remember, by the"$" sign), simply hit M-Q to reformat
the paragraph. There are other uses to which the kill buffer can
be put. Using the method we've already learned, define the last
paragraph as a region. Now type M-W copy-region.Nothing seems to
have happened; the cursor stays blinking at the point. But things
have changed, even though you may not be able to see any
alteration.

To see what has happened to the contents of the killbuffer,
move the cursor down a couple of lines and "yank"the contents of
the kill buffer back with ^Y. Notice the last paragraph is now
repeated. The region you defined is"tacked on" to the end of

your file because M-W copies a region to the kill buffer while
leaving the original text in your working buffer. Some caution
is needed however, because the contents of the kill buffer are
updated when you delete any regions, lines or words. If you are
moving large quantities of text, complete the operation before
you do anymore deletions or you could find that the text you want
to move has been replaced by the most recent deletion.
Remember--a buffer is a temporary area of computer memory that is
lost when the machine is powered down or switched off. In order
to make your changes permanent, they must be saved to a file
before you leave EMACS. Let's delete the section of text we just
added and save the file to disk.

Chapter 3 Summary

In Chapter 3, you learned how to achieve longer insertions and
deletions. The EMACS terms point and mark were introduced and
you learned how to manipulate text with the kill buffer.

Key Binding Keystroke Effect

set-mark M-<space> Marks the beginning
of a region

delete-region ^W Deletes region
between point and

mark and places it in
KILL buffer

copy-region M-W Copies text between
point and mark into
KILL buffer

yank-text ^Y Inserts a copy of the
KILL buffer into

current buffer at
point

Chapter 4
Search and Replace

4.1 Forward Search

Load EMACS and bring in the file you just saved. Your file
should look like the one below.

One of the largest growth areas in personal computing is
electronic publishing. There are packages available for
practically every machine from elegantly simple programs for the
humble Commodore 64 to sophisticated professional packages for PC
and Macintosh computers. Personal publishing greatly increases
the utility of practically every computer. Thousands of people
who joined the computer revolution of this decade only to hide
their machines unused in closets have discovered a new use for
them as dedicated publishing workstations. Electronic publishing
is as revolutionary in its way as the Gutenburg press. Whereas
the printing press allowed the mass production and distribution
of the written word, electronic publishing puts the means of
production in the hands of nearly every individual. From the
class magazine to the corporate report, electronic publishing is
changing the way we produce and disseminate information.

Let's use EMACS to search for the word "revolutionary" in
the second paragraph. Because EMACS searches from the current
cursor position toward the end of buffers, and we intend to
search forward, move the cursor to the beginning of the text.
Enter ^S search-forward. Note that the command line now reads

"Search [] <META>:"

EMACS is prompting you to enter the search string --the text
you want to find. Enter the word revolutionary and hit the META
key. The cursor moves to the end of the word"revolutionary."
Notice that you must enter the <META> key to start the search.
If you simply press <NL> the command line responds with "<NL>".
Although this may seem infuriating to users who are used to
pressing the return key to execute any command, EMACS' use of
<META> to begin searches allows it to pinpoint text with great
accuracy. After every line wrap or carriage return, EMACS 'sees'
a new line character (<NL>).If you need to search for a word at
the end of a line, you can specify this word uniquely in EMACS.
In our sample text for example, the word "and"occurs a number of

times, but only once at the end of aline. To search for this
particular occurrence of the word,move the cursor to the
beginning of the buffer and type ^S.Notice that EMACS stores the
last specified search string as the default string. If you press
<META> now, EMACS will search for the default string, in this
se,"revolutionary." To change this string so we can search for
our specified "and" simply enter the word and followed by
<NL>.The command line now shows: "search [and<NL>]<META>:"

 Press <META> and the cursor moves to "and" at the end of the
second last line.

4.2 Exact Searches

If the mode EXACT is active in the current buffer, EMACS
searches on a case sensitive basis. Thus, for example you could
search for Publishing as distinct from publishing.

4.3 Backward Search

Backward searching is very similar to forward searching
except that it is implemented in the reverse direction. To
implement a reverse search, type ^R search-reverse. Because
EMACS makes no distinction between forward and backward stored
search strings, the last search item you entered appears as the
default string. Try searching back for any word that lies
between the cursor and the beginning of the buffer. Notice that
when the item is found, the point moves to the beginning of the
found string (i.e., the cursor appears under the first letter of
the search item). Practice searching for other words in your
text.

4.4 Searching and Replacing

Searching and replacing is a powerful and quick way of
making changes to your text. Our sample text is about electronic
publishing, but the correct term is 'desktop' publishing. To
make the necessary changes we need to replace all occurrences of
the word "electronic" with "desktop."First, move the cursor to
the top of the current buffer with the M-< command. Then type M-
R replace-string. The command line responds:

"Replace []<META>:"

where the square brackets enclose the default string. Type the
word electronic and hit <META>. The command line responds:

"with []<META>" type desktop<META>.

EMACS replaces all instances of the original word with your
revision. Of course, you will have to capitalize the first
letter of "desktop" where it occurs at the beginning of a
sentence. You have just completed an unconditional replace. In
this operation, EMACS replaces every instance of the found string
with the replacement string.

4.5 Query-Replace

You may also replace text on a case by case basis. The M-^R
query-replace-string command causes EMACS to pause at each
instance of the found string. For example, assume we want to
replace some instances of the word "desktop" with the word
"personal." Go back to the beginning of the current buffer and
enter the M- ^R query-replace command. The procedure is very
similar to that which you followed in the unconditional
search/replace option. When the search begins however, you will
notice that EMACS pauses at each instance of "publishing" and
asks whether you wish to replace it with the replacement string.
You have a number of options available for response:

Response Effect

Y(es) Make the current replacement and skip to the
next occurrence of the search string

N(o) Do not make this replacement but continue

! Do the rest of the replacements with no more
queries

U(ndo) Undo just the last replacement and query for
it again (This can only go back ONE time)

^G Abort the replacement command (This action
does not undo previously-authorized

replacements

. Same effect as ^G, but cursor returns to the
point at which the replacement command was

given

? This lists help for the query replacement
command

Practice searching and searching and replacing until you feel
comfortable with the commands and their effects.

Chapter 4 Summary

In this chapter, you learned how to search for specified
strings of text in EMACS. The chapter also dealt with searching
for and replacing elements within a buffer.

Key Binding Keystroke Effect

search-forward ^S Searches from point
to end of buffer.

Point is moved from
current location to
the end of the found
string

search-backward ^R Searches from point
to beginning of

buffer. Point is
moved from current

location to beginning
of found string

replace M-R Replace ALL
occurrences of search
string with specified
(null) string from

point to the end of
the current buffer

query-replace M-^R As above, but pause
at each found string
and query for action

Chapter 5
Windows

5.1 Creating Windows

We have already met windows in an earlier chapter. In this
chapter, we will explore one of EMACS' more powerful features --
text manipulation through multiple windowing. Windows offer you a
powerful and easy way to edit text. By manipulating a number of
windows and buffers on the screen simultaneously, you can perform
complete edits and revisions on the computer screen while having
your draft text or original data available for reference in
another window.

You will recall that windows are areas of buffer text that
you can see on the screen. Because EMACS can support several
screen windows simultaneously you can use them to look into
different places in the same buffer. You can also use them to
look at text in different buffers. In effect, you can edit
several files at the same time.

Let's invoke EMACS and pull back our file on desktop
publishing by typing emacs publish.txt When the text appears,
type the ^X2 split-current- window command. The window splits
into two windows. The window where the cursor resides is called
the current window -- in this case the bottom window. Notice
that each window has a text area and a mode line. The command
line is however, common to all windows on the screen.

The two windows on your screen are virtually mirror images
of each other because the new window is opened into the same
buffer as the one you are in when you issue the open-window
command. All commands issued to EMACS are executed on the
current buffer in the current window.

To move the cursor to the upper window (i.e., to make that
window the current window, type ^XP previous- window. Notice the
cursor moves to the upper or previous window. Entering ^XO next-
window moves to the next window. Practice moving between
windows. You will notice that you can also move into the
Function Key menu by entering these commands.

Now move to the upper window. Let's open a new file. On
the EMACS disk is a tutorial file. Let's call it into the upper

window by typing:
^X^F

and press return. Enter the filename emacs.tut. In a short
time, the tutorial file will appear in the window. We now have
two windows on the screen, each looking into different buffers.
We have just used the ^X^F find-file command to find a file and
bring it into our current window.

You can scroll any window up and down with the cursor keys,
or with the commands we've learned so far. However, because the
area of visible text in each window is relatively small, you can
scroll the current window a line at a time.

Type ^X^N move-window-down

The current window scrolls down by one line -- the top line
of text scrolls out of view, and the bottom line moves towards
the top of the screen. You can imagine, if you like, the whole
window slowly moving down to the end of the buffer in increments
of one line. The command ^X^P move-window-up scrolls the window
in the opposite direction.

As we have seen, EMACS editing commands are executed in the
current window, but the program does support a useful feature
that allows you to scroll the next window. M-^Z scroll-next-up
scrolls the next window up, M-^V scroll-next- down scrolls it
downward. From the tutorial window, practice scrolling the
window with the desktop publishing text in it up and down. When
you're finished, exit EMACS without saving any changes in your
files.

Experiment with splitting the windows on your screen. Open
windows into different buffers and experiment with any other
files you may have. Try editing the text in each window, but
don't forget to save any changes you want to keep -- you still
have to save each buffer separately.

5.2 Deleting Windows

Windows allow you to perform complex editing tasks with
ease. However, they become an inconvenience when your screen is
cluttered with open windows you have finished using. The simplest
solution is to delete unneeded windows. The command ^X0 delete-

window will delete the window you are currently working in and
move you to the next window.

If you have a number of windows open, you can delete allbut
the current window by entering ^X1 delete-other- windows.

5.3 Resizing Windows

During complex editing tasks, you will probably find it
convenient to have a number of windows on the screen
simultaneously. However this situation may present
inconveniences because the more windows you have on the screen
the smaller they are; in some cases, a window may show only a
couple of lines of text. To increase the flexibility and utility
of the window environment, EMACS allows you to resize the window
you are working in (called, as you will recall, the current
window) to a convenient size for easier editing, and then shrink
it when you no longer need it to be so large.

Let's try an example. Load in any EMACS text file and split
the current window into two. Now type ^X^(Shift-6), grow-window.
Your current window should be the lower one on the screen.
Notice that it increases in size upwards by one line. If you are
in the upper window, it increases in size in a downward
direction. The command ^X^Z, shrink-window correspondingly
decreases window size by one line at a time.

EMACS also allows you to resize a window more precisely by
entering a numeric argument specifying the size of the window in
lines. To resize the window this way, press the META key and
enter a numeric argument (remember to keep it smaller than the
number of lines on your screen display) then press ^XW resize-
window. The current window will be enlarged or shrunk to the
number of lines specified in the numeric argument. For example
entering:

M-8 ^XW

will resize the current window to 8 lines.

5.4 Repositioning within a Window

The cursor may be centered within a window by entering M-!
or M-^L redraw-display. This command is especially useful in

allowing you to quickly locate the cursor if you are moving
frequently from window to window. You can also use this command
to move the line containing the cursor to any position within the
current window. This is done by using a numeric argument before
the command. Type M-<n> M-^L where <n> is the number of the line
within the window thatyou wish the current line to be displayed.

The ^L Refresh-screen command is useful for 'cleaning up' a
'messy' screen that can result of using EMACS on a mainframe
system and being interrupted by a system message.

Chapter 5 summary
In Chapter 5 you learned how to manipulate windows and the

editing flexibility they offer.

Key Binding Keystroke Effect

open-window ^X2 Splits current window
into two windows if
space available

close-windows ^X1 Closes all windows
except current window

next-window ^XO[oh] Moves point into next
(i.e. downward)

window

previous-window ^XP Moves point to
previous (i.e.

upward) window

move-window-down ^X^N Scrolls current
window down one line

move-window-up ^X^P Scrolls current
window up one line

redraw-display M ! or Window is moved so
line with point
(with cursor) is at
center of window

grow-window M-X ^ Current window is
enlarged by one line
and nearest window is
shrunk by one line

shrink-window ^X^Z Current window is
shrunk by one line

and nearest window is
enlarged by one line

clear-and-redraw ^L Screen is blanked and
redrawn. Keeps

screen updates in

sync with your
commands

scroll-next-up M-^Z Scrolls next window
up by one line

scroll-next-down M-^V Scrolls next window
down by one line

delete-window ^X0 Deletes current
window

delete-other-windows^X1 Deletes all but
current window

resize-window ^X^W Resizes window to a
given numeric

argument

Chapter 6
Using a Mouse

On computers equipped with a mouse, the mouse can usually be
used to make editing easier. If your computer has a mouse, let's
try using it. Start MicroEMACS by typing:

emacs publish.txt

This brings EMACS up and allows it to edit the file from the
last chapter. If the function key window is visible on the
screen, press the F5 key to cause it to disappear. Now use the
^X2 split-current-window command to split the screen into two
windows. Next use the ^X^F find- file command to read in the
fang.txt file. Now your screen should have two windows looking
into two different files.

Grab the mouse and move it around. On the screen an arrow,
or block of color appears. This is called the mouse cursor and
can be positioned on any character on the screen. On some
computers, positioning the mouse cursor in the extreme upper
right or left corner may bring down menus which allow you to
access that computers utilities, sometimes called Desk
Accessories.

6.1 Moving around with the mouse

Using the mouse button (or the left button if the mouse has
more than one), position the mouse over some character in the
current window. Click the mouse button once. The point will
move to where the mouse cursor is. If you place the mouse cursor
past the end of a line, the point will move to the end of that
line.

Move the mouse cursor into the other window and click on one
of the characters there. MicroEMACS will automatically make this
window the current window (notice that the mode line changes) and
position the point to the mouse cursor. This makes it very easy
to use the mouse to switch to a different window quickly.

6.2 Dragging around

Besides just using the mouse to move around on the screen,
you can use the same button to move text. Move the mouse cursor
to a character in one of the windows, and click down... but don't
let the button up yet! The point will move to where the mouse
cursor is. Now move the mouse cursor up or down on the screen,
and release the button. The point will again move to where the
mouse cursor is, but this time it will bring the text under it
along for the ride. This is called dragging, and is how you can
make the text appear just where you want it to. If you try to
drag text out of the current window, EMACS will ignore your
attempt and leave the point where you first clicked down.

Now, click down on a word in one of the windows, and drag it
directly to the left. Release the button and watch as the entire
window slides, or scrolls to the left. The missing text has not
been deleted, it is simply not visible, off the left hand side of
the screen. Notice the mode line has changed and now looks like:

==== MicroEMACS 3.10 [<12] () == fang.txt == File: fang.txt

The [] delimits a new field which indicates that the screen
is now scrolled 12 characters from the left margin.

Now grab the same text again, and drag it to the right,
pulling the rest of the text back into the current window. The
[<] field will disappear, meaning that the window is no longer
scrolled to the left. This feature is very useful for looking at
wide charts and tables. Remember, MicroEMACS will only scroll
the text in the current window sideways if you drag it straight
to the side, otherwise it will drag the text vertically.

Now, place the mouse cursor over a character on the upper
mode line, click down, move the mouse cursor up or down a few
lines and let go of the button. The mode line moves to where you
dragged it, changing the size of the windows above and below it.
If you try to make a window with less than one line, EMACS will
not let you. Dragging the mode lines can make it very fast and
easy for you to rearrange the windows as you would like.

If you have a number of different windows visible on the
screen, positioning the mouse over the mode line of one window
and clicking the right mouse button will cause that window to be
deleted.

6.3 Cut and Paste

If your mouse has two buttons, then you can use the right
button to do some other things as well. Earlier, we learned how
to define a region by using the M-<space> set- mark command.
Now, position the mouse over at the beginning of a region you
would like to copy. Next click and hold down the right mouse
button. Notice that the point jumps to the mouse cursor and
EMACS reports "[Mark Set]". Holding the button down move the
mouse to the end of the text you wish to copy and release the
mouse button. Emacs reports "[Region Copied]" to let you know it
has copied the region into the KILL buffer. If you now click the
right mouse button, without moving the mouse, the region you
defined would be deleted or cut from the current buffer.

If you move the mouse again, and click the right mouse
button down and up without moving the mouse, the text in the KILL
buffer gets inserted, or pasted into the current buffer at the
point.

Chapter 6 Summary

In Chapter 6, you learned how to use the mouse to move the
point, switch windows, drag text, and resize windows. You also
learned how to use the right mouse button in order to copy and
delete regions and yank them back at other places.

Action Mouse Directions

Move Cursor position mouse cursor over
desired location click down and
up with left button

Drag Text position mouse cursor over
desired text click left button
down move to new screen

location for text release mouse
button

Resize Windows position mouse cursor over mode
line to move click left button
down move to new location for
mode line release mouse button

Delete Window position mouse cursor over mode
line of window to delete click
right mouse button

Resize Screen position mouse cursor over last
character on message line click
left button down move to new

lower right corner of screen
release mouse button

Copy Region position mouse at beginning of
region click right button down
move to end of region release
mouse button

Cut Region position mouse at beginning of
region click right button down
move to end of region release
mouse button click right button
down and up

Paste region Position mouse at place to

paste click right button down
and up

Chapter 7
Buffers

We have already learned a number of things about buffers.
As you will recall, they are the major internal entities in EMACS
-- the place where editing commands are executed. They are
characterized by their names, their modes, and by the file with
which they are associated. Each buffer also "remembers" its mark
and point. This convenient feature allows you to go to other
buffers and return to the original location in the "current"
buffer.

Advanced users of EMACS frequently have a number of buffers
in the computer's memory simultaneously. In the last chapter,
for example, you opened at least two buffers -- one into the text
you were editing, and the other into the EMACS on-line tutorial.
If you deal with complex text files -- say, sectioned chapters of
a book, you may have five or six buffers in the computer's
memory. You could select different buffers by simply calling up
the file with ^X^F find-file, and let EMACS open or reopen the
buffer. However, EMACS offers fast and sophisticated buffering
techniques that you will find easy to master and much more
convenient to use.

Let's begin by opening three buffers. You can open any
three you choose, for example call the following files into
memory: fang.txt, publish.txt, and emacs.tut in the order listed
here. When you've finished this process, you'll be looking at a
screen showing the EMACS tutorial. Let's assume that you want to
move to the fang.txt buffer.
Enter:

^XX next-buffer

This command moves you to the next buffer. Because EMACS
cycles through the buffer list, which is alphabetized, you will
now be in the fang.txt buffer. Using ^XX again places you in the
publish.txt buffer. If you are on a machine that supports
function keys, using ^XX again places you in the Function Keys
buffer. Using ^XX one last time cycles you back to the beginning
of the list.

If you have a large number of buffers to deal with, this
cycling process may be slow and inconvenient. The command ^XB

select-buffer allows you to specify the buffer you wish to be
switched to. When the command is entered, EMACS prompts, "Use
buffer:". Simply enter the buffer name (NOTthe file name), and
that buffer will then become the current buffer. If you type in
part of the file name and press the space bar, EMACS will attempt
to complete the name from the list of current buffers. If it
succeeds, it will print the rest of the name and you can hit <NL>
to switch to that buffer. If EMACS beeps the bell, there is no
such buffer, and you may continue editing the name on the command
line.

Multiple buffer manipulation and editing is a complex
activity, and you will probably find it very inconvenient to re-
save each buffer as you modify it. The command ^X^B list-buffers
creates a new window that gives details about all the buffers
currently known to EMACS. Buffers that have been modified are
identified by the "buffer changed" indicator (an asterisk in the
second column). You can thus quickly and easily identify buffers
that need to be saved to files before you exit EMACS. The buffer
window also provides other information -- buffer specific modes,
buffer size, and buffer name are also listed. To close this
window, simply type the close-windows command, ^X1.

To delete any buffer, type ^XK delete-buffer. EMACS prompts
you "Kill buffer:". Enter the buffer name you want to delete.
As this is destructive command, EMACS will ask for confirmation
if the buffer was changed and not saved. Answer Y(es) or N(o).
As usual ^G cancels the command.

Chapter 7 Summary

In Chapter 7 you learned how to manipulate buffers.

Key Binding Keystroke Effect

next-buffer ^X^X Switch to the next
buffer in the buffer
list

select-buffer ^XB Switch to a
particular buffer

list-buffers ^X^B List all buffers

delete-buffer ^XK Delete a particular
buffer if it is

off-screen

Chapter 8
Modes

EMACS allows you to change the way it works in order to
customized it to the style of editing you are using. It does
this by providing a number of different modes. These modes can
effect either a single buffer, or any new buffer that is created.
To add a mode to the current buffer, type ^XM add-mode. EMACS
will then prompt you for the name of a mode to add. When you
type in a legal mode name, and type a <NL>, EMACS will add the
mode name to the list of current mode names in the mode line of
the current buffer.

To remove an existing mode, typing the ^X^M delete- mode
will cause EMACS to prompt you for the name of a mode to delete
from the current buffer. This will remove that mode from the
mode list on the current mode line. Global modes are the modes
which are inherited by any new buffers which are created. For
example, if you wish to always do string searching with character
case being significant, you would want global mode EXACT to be
set so that any new files read in inherent the EXACT mode.
Global modes are set with the M-M add-global-mode command, and
unset with the M-^M delete-global-mode command. Also, the
current global modes are displayed in the first line of a ^X^B
list-buffers command.

On machines which are capable of displaying colors, the mode
commands can also set the background and foreground character
colors. Using add-mode or delete-mode with a lowercase color
will set the background color in the current window. An
uppercase color will set the foreground color in the current
window. Colors that EMACS knows about are: white, cyan, magenta,
yellow, blue, red, green, and black. If the computer you are
running on does not have eight colors, EMACS will attempt to make
some intelligent guess at what color to use when you ask for one
which is not there.

8.1 ASAVE mode

Automatic Save mode tells EMACS to automatically write out
the current buffer to its associated file on a regular basis.
Normally this will be every 256 characters typed into the file.
The environment variable $ACOUNT counts down to the next auto-

save, and $ASAVE is the value used to reset $ACOUNT after a save
occurs.

8.2 CMODE mode

CMODE is useful to C programmers. When CMODE is active,
EMACS will try to assist the user in a number of ways. This mode
is set automatically with files that have a .c or .h extension.

The <NL> key will normally attempt to return the user to the
next line at the same level of indentation as the last non blank
line, unless the current line ends with a open brace ({) in which
case the new line will be further indented by one tab position.
A close brace (}) will search for the corresponding open brace
and line up with it. A pound sign (#) with only leading white
space will delete all the white space preceding itself. This
will always bring preprocessor directives flush to the left
margin.

Whenever any close fence is typed, IE)]>}, if the matching
open fence is on screen in the current window, the cursor will
briefly flash to it, and then back. This makes balancing
expressions, and matching blocks much easier.

8.3 CRYPT mode

When a buffer is in CRYPT mode, it is encrypted whenever it
is written to a file, and decrypted when it is read from the
file. The encryption key can be specified on the command line
with the -k switch, or with the M-E set- encryption-key command.
If you attempt to read or write a buffer in crypt mode and now
key has not been set, EMACS will execute set-encryption-key
automatically, prompting you for the needed key. Whenever EMACS
prompts you for a key, it will not echo the key to your screen as
you type it (IE make SURE you get it right when you set it
originally).

The encryption algorithm used changes all characters into
normal printing characters, thus the resulting file is suitable
for sending via electronic mail. All version of MicroEMACS
should be able decrypt the resulting file regardless of what
machine encrypted it. Also available with EMACS is the stand
alone program, MicroCRYPT, which can en/decrypt the files
produced by CRYPT mode in EMACS.

8.4 EXACT mode

All string searches and replacements will take upper/lower case
into account. Normally the case of a string during a search or
replace is not taken into account.

8.5 MAGIC mode

In the MAGIC mode certain characters gain special meanings when
used in a search pattern. Collectively they are know as regular
expressions, and a limited number of them are supported in
MicroEmacs. They grant greater flexibility when using the search
command. However, they do not affect the incremental search
command.

The symbols that have special meaning in MAGIC mode are ^,
$, ., &, *, [(and], used with it), and \. The characters ^ and
$ fix the search pattern to the beginning and end of line,
respectively. The ^ character must appear at the beginning of
the search string, and the $ must appear at the end, otherwise
they loose their meaning and are treated just like any other
character. For example, in MAGIC mode, searching for the pattern
"t$" would put the cursor at the end of any line that ended with
the letter 't'. Note that this is different than searching for
"t<NL>", that is, 't' followed by a newline character. The
character $ (and ^, for that matter) matches a position, not a
character, so the cursor remains at the end of the line. But a
newline is a character that must be matched, just like any other
character, which means that the cursor is placed just after it -
on the beginning of the next line.

The character . has a very simple meaning -- it matches any
single character, except the newline. Thus a search for "bad.er"
could match "badger", "badder" (slang), or up to the 'r' of "bad
error". The character * is known as closure, and means that
zero or more of the preceding character will match. If there is
no character preceding, * has no special meaning, and since it
will not match with a newline, * will have no special meaning if
preceded by the beginning of line symbol ^ or the literal newline
character <NL>. The notion of zero or more characters is
important. If, for example, your cursor was on the line

This line is missing two vowels.

and a search was made for "a*", the cursor would not move,
because it is guaranteed to match no letter 'a' , which satisfies
the search conditions. If you wanted to search for one or more
of the letter 'a', you would search for "aa*", which would match
the letter a, then zero or more of them.

The character [indicates the beginning of a character
class. It is similar to the 'any' character ., but you get to
choose which characters you want to match. The character class
is ended with the character]. So, while a search for "ba.e"
will match "bane", "bade", "bale", "bate", et cetera, you can
limit it to matching "babe" and "bake" by searching for
"ba[bk]e". Only one of the characters inside the [and] will
match a character. If in fact you want to match any character
except those in the character class, you can put a ^ as the first
character. It must be the first character of the class, or else
it has no special meaning. So, a search for [^aeiou] will match
any character except a vowel, but a search for [aeiou^] will
match any vowel or a ^.

If you have a lot of characters in order that you want to
put in the character class, you may use a dash (-) as a range
character. So, [a-z] will match any letter (or any lower case
letter if EXACT mode is on), and [0-9a-f] will match any digit or
any letter 'a' through 'f', which happen to be the characters for
hexadecimal numbers. If the dash is at the beginning or end of a
character class, it is taken to be just a dash.

The character & (ampersand) is a replacement character, and
represents the characters which matched the search string. When
used in the M-R replace-string or the M-^R query-replace-string
commands, the & will be substituted for the search string.

The escape character \ is for those times when you want to
be in MAGIC mode, but also want to use a regular expression
character to be just a character. It turns off the special
meaning of the character. So a search for "it\." will search for
a line with "it.", and not "it" followed by any other character.
The escape character will also let you put ^, -, or] inside a
character class with no special side effects.

8.6 OVER mode

OVER mode stands for overwrite mode. When in this mode,
when characters are typed, instead of simply inserting them into
the file, EMACS will attempt to overwrite an existing character
past the point. This is very useful for adjusting tables and
diagrams.

8.7 WRAP mode

Wrap mode is used when typing in continuous text. Whenever
the cursor is past the currently set fill column (72 by default)
and the user types a space or a <NL>, the last word of the line
is brought down to the beginning of the next line. Using this,
one just types a continuous stream of words and EMACS
automatically inserts <NL>s at appropriate places.

NOTE to programmers:
The EMACS variable $wraphook contains the name of the

function which executes when EMACS detects it is time to wrap.
This is set to the function wrap- word by default, but can be
changed to activate different functions and macros at wrap time.

8.8 VIEW mode

VIEW mode disables all commands which can change the current
buffer. EMACS will display an error message and ring the bell
every time you attempt to change a buffer in VIEW mode.

Chapter 8 Summary

In Chapter 8 you learned about modes and their effects.

Key Binding Keystroke Effect

add-mode ^XM Add a mode to the current
buffer

delete-mode ^X^M Delete a mode from the
current buffer

add-global-mode M-M Add a global mode to the
current buffer

delete-global-mode M-^M Delete a global mode from
the current buffer

Chapter 9
Files

A file is simply a collection of related data. In EMACS we
are dealing with text files -- named collections of text residing
on a disk (or some other storage medium). You will recall that
the major entities EMACS deals with are buffers. Disk-based
versions of files are only active in EMACS when you are reading
into or writing out of buffers. As we have already seen, buffers
and physical files are linked by associated file names. For
example, the buffer "ch7.txt" which is associated with the
physical disk file "ch7.txt." You will notice that the file is
usually specified by the drive name or (in the case of a hard
drive) a path. Thus you can specify full file names in EMACS,

e.g. disk:\directories\filename.extension

If you do not specify a disk and directories, the default
disk and the current directory is used.

IMPORTANT -- If you do not explicitly save your buffer to a
file, all your edits will be lost when you leave EMACS (although
EMACS will prompt you when you are about to lose edits by
exiting). In addition, EMACS does not protect your disk-based
files from overwriting when it saves files. Thus when you
instruct EMACS to save a file to disk, it will create a file if
the specified file doesn't exist, or it will overwrite the
previously saved version of the file thus replacing it. Your old
version is gone forever.

If you are at all unsure about your edits, or if (for any
reason) you wish to keep previous versions of a file, you can
change the name of the associated file with the command ^XN
change-file-name. When this file is saved to disk, EMACS will
create a new physical file under the new name. The earlier disk
file will be preserved.

For example, let's load the file fang.txt into EMACS. Now,
type ^XN. The EMACS command line prompts "Name:". Enter a new
name for the file -- say new.txt and press <NL>. The file will
be saved under the new filename, and your disk directory will
show both fang.txt and new.txt.

An alternative method is to write the file directly to disk
under a new filename. Let's pull our "publish.txt" file into
EMACS. To write this file under another filename, type ^X^W
write-file. EMACS will prompt you "write file:". Enter an
alternate filename -- desktop.txt. Your file will be saved as
the physical file "desktop.txt".

Note that in the examples above, although you have changed
the names of the related files, the buffer names remain the same.
However, when you pull the physical file back into EMACS, you
will find that the buffer name now relates to the filename.

For example -- You are working with a buffer "fang.txt" with
the related file "fang.txt". You change the name of the file to
"new.txt". EMACS now shows you working with the buffer
"fang.txt" and the related file "new.txt". Now pull the file
"new.txt" into EMACS. Notice that the buffer name has now
changed to "new.txt".

If for any reason a conflict of buffer names occurs,(if you
have files of the same name on different drives for example)
EMACS will prompt you "use buffer:". Enter an alternative buffer
name if you need to.

For a list of file related commands (including some we`ve
already seen), see the summary page.

Chapter 9 Summary
In Chapter 9 you learned some of the more advanced concepts

of file naming and manipulation. The relationship between files
and buffers was discussed in some detail.

Key Binding Keystroke Effect

save-file ^X^S Saves contents of
current buffer with
associated filename
on default disk/

directory (if not
specified)

write-file ^X^W Current buffer
contents will be

saved under specified
name

change-file-name ^XN The associated
filename is changed
(or associated if not
previously specified)
as specified

find-file ^X^F Reads specified file
into buffer and

switches you to that
buffer, or switches
to buffer in which

the file has
previously been read

read-file ^X^R Reads file into
buffer thus

overwriting buffer
contents. If file

has already been read
into another buffer,
you will be switched
to it

view-file ^X^V The same as read-file
except the buffer is
automatically put

into VIEW mode thus

preventing any
changes from being

made

Chapter 10
Screen Formatting

10.1 Wrapping Text

As we learned in the introduction, EMACS is not a word
processor, but an editor. Some simple formatting options are
available however, although in most cases they will not affect
the appearance of the finished text when it is run through the
formatter. We have already encountered WRAP mode which wraps
lines longer than a certain length (default is 75 characters).
You will recall that WRAP is enabled by entering ^XM and
responding to the command line prompt with wrap.

You can also set your own wrap margin with the command ^XF
set-fill-column. Notice EMACS responds "[Fill column is 1]." Now
try typing some text. You'll notice some very strange things
happening -- your text wraps at every word!! This effect occurs
because the set wrap margin command must be preceded by a numeric
argument or EMACS sets it to the first column. Thus any text you
type that extends past the first column will wrap at the most
convenient line break.

To reset the wrap column to 72 characters, press the <META>
key and enter 72. EMACS will respond "Arg: 72". Now press ^XF.
EMACS will respond "[Fill column is 72]". Your text will again
wrap at the margin you've been using up to this point.

10.2 Reformatting Paragraphs

After an intensive editing session, you may find that you
have paragraphs containing lines of differing lengths. Although
this disparity will not affect the formatted text, aesthetic and
technical concerns may make it desirable to have consistent
paragraph blocks on the screen. If you are in WRAP mode, you can
reformat a paragraph with the command M-Q fill-paragraph. This
command 'fills' the current paragraph reformatting it so all the
lines are filled and wrap logically.

10.3 Changing Case

There may be occasions when you find it necessary to change
the case of the text you've entered. EMACS allows you to change
the case of even large amounts of text with ease. Let's try and
convert a few of the office traditionalists to the joy of word
processing. Type in the following text:

Throw away your typewriter and learn to use a word
processor. Word processing is relatively easy to learn and will
increase your productivity enormously. Enter the Computer Age
and find out just how much fun it can be!!

Let's give it a little more impact by capitalizing the first
four words. The first step is to define the region of text just
as you would if you were doing an extensive deletion. Set the
mark at the beginning of the paragraph with M-<space> set-mark
and move the cursor to the space beyond "typewriter." Now enter
^X^U case-region-upper. Your text should now look like this:

THROW AWAY YOUR TYPEWRITER and learn to use a word
processor. Word processing is relatively easy to learn and will
increase your productivity enormously. Enter the Computer Age
and find out just how much fun it can be!!

If you want to change the text back to lower case, type ^X^L
case-region-lower. You can also capitalize individual words. To
capitalize the word "fun", position the cursor in front of the
word and type M-U case-word-upper . The word is now capitalized.
To change it ck to lower case, move the cursor back to the
beginning of the word and type M-L case-word-lower.

You may also capitalize individual letters in EMACS. The
command M-C case-word-capitalize capitalizes the first letter
after the point. This command would normally be issued with the
cursor positioned in front of the first letter of the word you
wish to capitalize. If you issue it in the middle of a word, you
can end up with some strAnge looking text.

10.4 Tabs

Unless your formatter is instructed to take screen text
literally (as MicroSCRIBE does in the 'verbatim' environment for
example), tabs in EMACS generally affect screen formatting only.

When EMACS is first started, it sets the default tab to
every eighth column. As long as you stay with default, every
time you press the tab key a tab character, ^I is inserted. This
character, like other control characters, is invisible -- but it
makes a subtle and significant difference to your file and
editing.

For example, in default mode, press the tab key and then
type the word Test. "Test" appears at the eighth column. Move
your cursor to the beginning of the word and delete the backward
character. The word doesn't move back just one character, but
flushes to the left margin. The reason for this behavior is
easily explained. In tab default, EMACS inserts a 'real' tab
character when you press the tab key. This character is inserted
at the default position, but NO SPACES are inserted between the
tab character and the margin (or previous tab character). As you
will recall, EMACS only recognizes characters (such as spaces or
letters) and thus when the tab character is removed, the text
beyond the tab is flushed back to the margin or previous tab
mark.

This situation changes if you alter the default
configuration. The default value may be changed by entering a
numeric argument before pressing the tab key. As we saw earlier,
pressing the META key and entering a number allows you to specify
how EMACS performs a given action. In this case, let's specify
an argument of 10 and hit the tab key.

Now hit the tab key again and type Test. Notice the word
now appears at the tenth column. Now move to the beginning of
the word and delete the backward character. "Test" moves back by
one character.

EMACS behaves differently in these circumstances because the
^I handle-tab function deals with tabbing in two distinct ways.
In default conditions, or if the numeric argument of zero is
used, handle-tab inserts a true tab character. If, however, a
non-zero numeric argument is specified, handle-tab inserts the
correct number of spaces needed to position the cursor at the

next specified tab position. It does NOT insert the single tab
character and hence any editingfunctions should take account of
the number of spaces between tabbed columns.

The distance which a true tab character moves the cursor can
be modified by changing the value of the $hardtab environment
variable. Initially set to 8, this will determine how far each
tab stop is placed from the previous one. (Use the ^XA set
command to set the value of an environment variable).

Many times you would like to take text which has been
created using the tab character and change it to use just spaces.
The command ^X^D detab-region changes any tabs in the currently
selected region into the right number of spaces so the text does
not change. This is very useful for times when the file must be
printed or transferred to a machine which does not understand
tabs.

Also, the inverse command, ^X^E entab-region changes
multiple spaces to tabs where possible. This is a good way to
shrink the size of large documents, especially with data tables.
Both of these commands can take a numeric argument which will be
interpreted as the number of lines to en/detab.

Another function, related to those above is provided for by
the ^X^T trim-region when invoked will delete any trailing white
space in the selected region. A preceding numeric argument will
do this for that number of lines.

Chapter 10 Summary

In Chapter 10 introduced some of the formatting features of
EMACS. Text-wrap, paragraph reformatting, and tabs were
discussed in some detail. The commands in the following table
were covered in the chapter.

Key Binding Keystroke Effect

add-mode/WRAP ^XM[WRAP] Add wrap mode to
current buffer

delete-mode/WRAP ^X^M[WRAP] Remove wrap mode from
current buffer

set-fill-column ^XF Set fill column to
given numeric

argument

fill-paragraph M-Q Logically reformats
the current paragraph

case-word-upper M-U Text from point to
end of the current

word is changed to
uppercase

case-word-lower M-L Text from point to
end of the current

word is changed to
lowercase

case-word-capitalize M-C First word (or
letter) after the

point is capitalized

case-region-upper ^X^U The current region is
uppercased

case-region-lower ^X^L The current region is
lowercased

handle-tab ^I Tab interval is set
to the given numeric
argument

entab-region ^X^E Changes multiple
spaces to tabs

characters where
possible

detab-region ^X^D Changes tab
characters to the

appropriate number of
spaces

trim-region ^X^T Trims white space
from the end of the
lines in the current
region

Chapter 11
Access to the Outside World

EMACS has the ability to interface to other programs and the
environment of the computer outside of itself. It does this
through a series of commands that allow it to talk to the
computer's command processor or shell. Just what this is varies
between different computers. Under MSDOS or PCDOS this is the
command.com command processor. Under UNIX it is the csh shell.
On the Atari ST is can be the Mark Williams MSH or the Beckmeyer
shell. In each case, it is the part of the computer's operating
system that is responsible for determining what programs are
executed, and when.

The ^X! shell-command command prompts the user for a command
line to send out to the shell to execute. This can be very
useful for doing file listings and changing the current directory
or folder. EMACS gives control to the shell, which executed the
command, and then types [END] and waits for the user to type a
character before redrawing the screen and resuming editing. If
the shell-command command is used from within the macro language,
there is no pause.

^X@ pipe-command command allows EMACS to execute a shell
command, and if the particular computer allows it, send the
results into a buffer which is automatically displayed on the
screen. The resulting buffer, called "command" can be
manipulated just like any other editing buffer. Text can be
copied out of it or rearranged as needed. This buffer is
originally created in VIEW mode, so remember to ^X^Mview<NL> in
order to change it.

Many computers provide tools which will allow you to filter
text, making some modifications to it along the way. A very
common tool is the SORT program which accepts a file, sorts it,
and prints the result out. The EMACS command, ^X# filter-buffer
sends the current buffer through such a filter. Therefore, if
you wished to sort the current buffer on a system which supplied
a sort filter, you would type ^X#sort<NL>. You can also create
your own filters by writing programs and utilities which read
text from the keyboard and display the results. EMACS will use
any of these which would normally be available from the current
shell.

If you would like to execute another program directly,
without the overhead of an intervening shell, you can use the ^X$
execute-program command. It will prompt you for anexternal
program and its arguments and attempt to execute it. Like when
EMACS looks for command files, EMACS will look first in the HOME
directory, then down the execute PATH, and finally in the current
directory for the named program. On some systems, it will
automatically tack the proper extension on the file name to
indicate it is a program. On some systems that don't support
this function, ^X$ will be equivalent to ^X! shell-command.

Sometimes, you would like to get back to the shell and
execute other commands, without losing the current contents of
EMACS. The ^XC i-shell command shells out of EMACS, leaving
EMACS in the computer and executing another command shell. Most
systems would allow you to return to EMACS with the "exit"
command.

On some systems, mainly advanced versions of UNIX, you can
direct EMACS to "go into the background" with the ^XD suspend-
emacs command. This places EMACS in the background returning you
to the original command shell. EMACS can then be returned to at
any time with the "fg" foreground command.

Chapter 11 Summary

In Chapter 11 introduced different ways to access the
computers shell or command processor from within EMACS. The
commands in the following table were covered in the chapter.

Key Binding Keystroke Effect

execute-program ^X$ Execute an
external program
directly

filter-command ^X# Send the current
buffer through a
shell filter

i-shell ^XC Escape to a new
shell

pipe-command ^X@ Send the results
of an external
shell command to
a buffer

shell-command ^X! Execute one
shell command

suspend-emacs ^XD Place EMACS in
the background
(some UNIX

systems only)

Chapter 12
Keyboard Macros

In many applications, it may be necessary to repeat a series
of characters or commands frequently. For example, a paper may
require the frequent repetition of a complex formula or a long
name. You may also have a series of EMACS commands that you
invoke frequently. Keyboard macros offer a convenient method of
recording and repeating these commands.

Imagine, for example, you are writing a scholarly paper on
Asplenium platyneuron, the spleenwort fern. Even the dedicated
botanist would probably find it a task bordering on the agonizing
to type Asplenium platyneuron frequently throughout the paper.
An alternative method is 'record' the name in a keyboard macro.
Try it yourself.

The command ^X(begin-macro starts recording the all the
keystrokes and commands you input. After you've typed it, enter
Asplenium platyneuron. To stop recording, type ^X) end-macro.
EMACS has stored all the keystrokes between the two commands. To
repeat the name you've stored, just enter ^XE execute-macro, and
the name "Asplenium platyneuron" appears. You can repeat this
action as often as you want, and of course as with any EMACS
command, you may precede it with a numerical argument.

Because EMACS records keystrokes, you may freely intermix
commands and text. Unfortunately, you can only store one macro
at a time. Thus, if you begin to record another macro, the
previously defined macro is lost. Be careful to ensure that
you've finished with one macro before defining another. If you
have a series of commands that you would like to 'record' for
future use, use the macro or procedure facilities detailed in
chapter <X>.

Chapter 12 Summary

Chapter 12 covered keyboard macros. You learned how to
record keystrokes and how to repeat the stored sequence.

Key Binding Keystroke Effect

start-macro ^X(Starts recording all
keyboard input

end-macro ^X) Stops recording
keystrokes for macro

execute-macro ^XE Entire sequence of
recorded keystrokes
is replayed

Chapter 13
MicroEMACS Macros

Macros are programs that are used to customize the
editor and to perform complicated editing tasks. They may be
stored in files or buffers and may be executed using an
appropriate command, or bound to a particular keystroke. Portions
of the standard start-up file are implemented via macros, as well
as the example menu system. The execute- macro-<n> commands
cause the macro, numbered from 1 to 40, to be executed. The
execute-file command allows you to execute a macro stored in a
disk file, and the execute- buffer command allows you to execute
a macro stored in a buffer. Macros are stored for easy execution
by executing files that contain the store-macro command.

If you need more than 40 macros, named macros, called
procedures, can be used. The store-procedure command takes a
string argument which is the name of a procedure to store. These
procedures than can be executed with the M-^E execute-procedure
or the run commands. Also, giving the name of a stored procedure
within another macro will executed that named procedure as if it
had been called up with the run command.

Some fairly length examples of MicroEMACS macros can be seen
by examining the standard files that come with EMACS. The
emacs.rc file (called .emacsrc) under UNIX) is the EMACS macro
file which is executed when EMACS is normally run. It contains a
number of different stored macros along with the lines to setup
and display the Function key window and to call up other commands
and macro files using function keys.

There are many different aspects to the macro language
within MicroEMACS. Editor commands are the various commands that
manipulate text, buffers, windows, et cetera, within the editor.
Directives are commands which control what lines get executed
within a macro. Also there are various types of variables.
Environmental variables both control and report on different
aspects of the editor. User variables hold string values which
may be changed and inspected. Buffer variables allow text to be
placed into variables. Interactive variable allow the program to
prompt the user for information. Functions can be used to
manipulate all these variables.

13.1 Constants

All constants and variable contents in EMACS are stored as
strings of characters. Numbers are stored digit by digit as
characters. This allows EMACS to be "typeless", not having
different variables types be legal in different contexts. This
has the disadvantage of forcing the user to be more careful about
the context of the statements variables are placed in, but in
turn gives them more flexibility in where they can place
variables. Needless to say, this also allows EMACS's expression
evaluator to be both concise and quick.

Wherever statements need to have arguments, it is legal to
place constants. A constant is a double quote character,
followed by a string of characters, and terminated by another
double quote character. To represent various special characters
within a constant, the tilde (~) character is used. The
character following the tilde is interpreted according to the
following table:

Sequence Result

~n EMACS newline character (breaks lines)
~r ^M carriage return
~l ^J linefeed
~~ ~ tilde
~b ^H backspace
~f ^L formfeed
~t ^I tab
~" " quote

Any character not in the table which follows a tilde will be
passed unmodified. This action is similar to the ^Q quote-
character command available from the keyboard.

EMACS may use different characters for line terminators on
different computers. The ~n combination will always get the
proper line terminating sequence for the current system.

The double quotes around constants are not needed if the
constant contains no internal white space and it also does not
happen to meet the rules for any other EMACS commands,
directives, variables, or functions. This is reasonable useful
for numeric constants.

13.2 Variables

Variables in MicroEMACS can be used to return values within
expressions, as repeat counts to editing commands, or as text to
be inserted into buffers and messages. The value of these
variables is set using the set (^XA) command. For example, to
set the current fill column to 64 characters, the following macro
line would be used:

set $fillcol 64

or to have the contents of %name inserted at the point in the
current buffer, the command to use would be:

insert-string %name

13.2.1 Environmental Variables

"What good is a quote if you can't change it?"

These variables are used to change different aspects of the
way the editor works. Also they will return the current settings
if used as part of an expression. All environmental variable
names begin with a dollar sign ($)and are in lower case.

$acount The countdown of inserted characters
until the next save-file

$asave The number of inserted characters between
automatic file-saves in ASAVE mode

$bufhook The function named in this variable is
run when a buffer is entered. It can be
used to implement modes which are

specific to a paricular file or file type.

$cbflags Current buffer attribute flags (See
appendix G for details)

$cbufname Name of the current buffer

$cfname File name of the current buffer

$cmdhook Name of function to run before accepting

a command. This is by default set to nop
$cmode Integer containing the mode of the

current buffer. (See Appendix F for
values)

$curchar Ascii value of the character currently at
the point

$curcol Current column of point in current buffer

$curline Current line of point in current buffer

$curwidth Number of columns used currently

$cwline Current display line in current window

$debug Flag to trigger macro debugging

$diagflag If set to TRUE, diagonal dragging of text
and mode lines is enabled. If FALSE,

text and modelines can only be dragged
horizontally or vertically at one time.

$discmd Flag to disable the echoing of messages
on the command line

$disinp Flag to disable the echoing of characters
during command line input

$exbhook This variable holds the name of a
function or macro which is run whenever
you are switching out of a buffer.

$fcol The current line position being displayed
in the first column of the current

window.

$fillcol Current fill column

$flicker Flicker Flag set to TRUE if IBM CGA set
to FALSE for most others

$gflags Global flags controlling some EMACS
internal functions (See appendix G for

details)

$gmode Global mode flags. (See Appendix F for

values)

$hardtab Number of spaces between hard tab stops.
Normally 8, this can be used to change

indentation only within the editor.

$hjump The number in here tells EMACS how many
columns to scroll the screen horizontally
when a horizontal scroll is required.

$hscroll This flag determines if EMACS will scroll
the entire current window horizontally,
or just the current line. The default

value, TRUE, results in the entire
current window being shifted left and

right when the cursor goes off the edge
of the screen.

$kill This contains the first 127 characters
currently in the kill buffer and can be
used to set the contents of the kill

buffer

$language [READ ONLY]Contains the name of the
language which the current EMACS's

message will display. (Currently EMACS
is available in English, French, Spanish,
Pig Latin, Portuguese, Dutch, German and
Esperonto).

$lastkey [READ ONLY]Last keyboard character typed

$lastmesg [READ ONLY]Contains the text of the last
message which emacs wrote on the command
line

$line The current line in the current buffer
can be retrieved and set with this

environment variable

$lwidth [READ ONLY]Returns the number of
characters in the current line

$match [READ ONLY]Last string matched in a magic
mode search

$modeflag Determines if mode lines are currently
displayed

$msflag If TRUE, the mouse (if present) is
active. If FALSE, no mouse cursor is

displayed, and no mouse actions are
taken.

$pagelen Number of screen lines used currently

$palette string used to control the palette
register settings on graphics versions.
The usually form consists of groups of

three octal digits setting the red,
green, and blue levels.

$pending [READ ONLY]Flag to determine if there are
user keystrokes waiting to be processed.

$progname [READ ONLY]Always contains the string
"MicroEMACS" for standard MicroEMACS.

Could be something else if EMACS is
incorporated as part of someone else's
program

$readhook This variable holds the name of a
function to execute whenever a file is

read into EMACS. Normally, using the
standard emacs.rc file, this is bound to
a function which places EMACS into CMODE
if the extension of the file read is .c
or .h

$replace Current default replace string

$rval This contains the return value from the
last subprocess which was invoked from

EMACS

$search Current default search string

$seed Integer seed of the random number
generator

$softtab Number of spaces inserted by EMACS when
the handle-tab command (which is normally
bound to the TAB key) is invoked.

$sres Current screen resolution (CGA, MONO, EGA

or VGA on the IBM-PC driver. LOW,
MEDIUM, HIGH or DENSE on the Atari

ST1040, NORMAL on all others)
$ssave If TRUE, when EMACS is asked to save the

current file, it writes all files out to
a temporary file, deletes the original,
and then renames the temporary to the old
file name. The default value of this is
TRUE.

$sscroll Changes EMACS, when set to TRUE, to
smoothly scroll windows (one line at a

time) when cursoring off the ends of the
current window.

$status [READ ONLY]Status of the success of the
last command (TRUE or FALSE). This is

usually used with !force to check on the
success of a search, or a file operation.

$sterm This is the character used to terminate
search string inputs. The default for

this is the last key bound to meta-prefix

$target Current target for line moves (setting
this fool's EMACS into believing the last
command was a line move)

$time [READ ONLY] Contains a string
corresponding to the current date and

time. Usually this is in a form similar
to "Mon May 09 10:10:58 1988". Not all
operating systems will support this.

$tpause Controls the length of the pause to
display a matched fence when the current
buffer is in CMODE and a close fence has
been typed

$version [READ ONLY]Contains the current
MicroEMACS version number

$wline Number of display lines in current window

$wraphook This variable contains the name of an
EMACS function which is executed when a
buffer is in WRAP mode and it is time to

wrap. By default this is bound to
wrap-word.

$writehook This variable contains the name of an
EMACS function or macro which is invoked
whenever EMACS attempts to write a file
out to disk. This is executed before the
file is written, allowing you to process
a file on the way out.

$xpos The column the mouse was at the last
mouse button press

$ypos The line which the mouse was on during
the last mouse button press

Obviously, many more of these variables will be available in
future releases of MicroEMACS. (Yes, send a vote for your
favorite new environmental variables today).

13.2.2 User variables

User variables allow you, the user, to store strings and
manipulate them. These strings can be pieces of text, numbers
(in text form), or the logical values TRUE and FALSE. These
variables can be combined, tested, inserted into buffers, and
otherwise used to control the way your macros execute. At the
moment, up to 255 user variables may be in use in one editing
session. All users variable names must begin with a percent sign
(%) and may contain any printing characters. Only the first 10
characters are significant (IE differences beyond the tenth
character are ignored). Most operators will truncate strings to
a length of 128 characters.

13.2.3 Buffer Variables

Buffer variables are special in that they can only be
queried and cannot be set. What buffer variables are is a way to
take text from a buffer and place it in a variable. For example,
if I have a buffer by the name of RIGEL2, and it contains the
text:

Richmond
Lafayette
<*>Bloomington (where <*> is the current point)

Indianapolis
Gary =* MicroEMACS 3.10 (WRAP) == rigel2 == File:

/data/rigel2.txt=====

and within a command I reference #rigel2, like:

insert-string #rigel2

MicroEMACS would start at the current point in the RIGEL2
buffer and grab all the text up to the end of that line and pass
that back. Then it would advance the point to the beginning of
the next line. Thus, after our last command executes, the string
"Bloomington" gets inserted into the current buffer, and the
buffer RIGEL2 now looks like this:

Richmond
Lafayette
Bloomington
<*>Indianapolis (where <*> is the current point)
Gary
=* MicroEMACS 3.10 (WRAP) == rigel2 == File:

/data/rigel2.txt=====

as you have probably noticed, a buffer variable
consists of the buffer name, preceded by a pound sign (#).

13.2.4 Interactive variables

Interactive variables are actually a method to prompt the
user for a string. This is done by using an at sign (@) followed
either with a quoted string, or a variable containing a string.
The string is the placed on the bottom line, and the editor waits
for the user to type in a string. Then the string typed in by the
users is returned as the value of the interactive variable. For
example:

set %quest "What file? "
find-file @%quest

will ask the user for a file name, and then attempt to find it.
Note also that complex expressions can be built up with these
operators, such as:

@&cat &cat "File to decode[" %default "]: "
which prompts the user with the concatenated string.

13.3 Functions

Functions can be used to manipulate variables in various
ways. Functions can have one, two, or three arguments. These
arguments will always be placed after the function on the current
command line. For example, if we wanted to increase the current
fill column by two, using emacs's set (^XA) command, we would
write:

 set $fillcol &add $fillcol 2
 \ \ \ \ ____second operand
 \ \ \ _________first operand
 \ \ _______________function to execute
 \ _____________________variable to set
 ___________________________set (^XA) command

Function names always begin with the ampersand (&)
character, and are only significant to the first three characters
after the ampersand. Functions will normal expect one of three
types of arguments, and will automatically convert types when
needed.

<num> an ascii string of digits which is interpreted as a
numeric value. Any string which does not start with a digit or a
minus sign (-) will be considered zero.

<str> An arbitrary string of characters. At the moment,
strings are limited to 128 characters in length.

<log> A logical value consisting of the string "TRUE" or
"FALSE". Numeric strings will also evaluate to "FALSE" if they
are equal to zero, and "TRUE" if they are non-zero. Arbitrary
text strings will have the value of "FALSE".

 A list of the currently available functions follows: (Once
again, send in those votes on what kind of functions you would
like to see added!) Functions are always used in lower case, the
uppercase letters in the function table are the short form of the
function (IE &div for ÷).

Numeric Functions: (returns <num>)

&ADD <num> <num> Add two numbers
&SUB <num> <num> Subtract the second number from the first

&TIMes <num> <num> Multiply two numbers
&DIVide <num> <num> Divide the first number by the second
giving an integer result
&MOD <num> <num> Return the reminder of dividing the first
number by the second

&NEGate <neg> Multiply the arg by -1
&LENgth <str> Returns length of string
&SINdex <str1> <str2> Finds the position of <str2> within
<str1>. Returns zero if not found.

&ASCii <str> Return the ascii code of the first character in
<str>

&RND <num> Returns a random integer between 1 and <num>

&ABS <num> Returns the absolute value of <num>
&BANd <num> <num> Bitwise AND function
&BOR <num> <num> Bitwise OR function
&BXOr <num> <num> Bitwise XOR function
&BNOt <num> Bitwise NOT function

String manipulation functions: (returns <str>)

&CAT <str> <str> Concatenate the two strings to form one
&LEFt <str> <num> return the <num> left most characters from
<str>

&RIGht <str> <num> return the <num> right most characters from
<str>

&MID <str> <num1> <num2> Starting from <num1> position in
<str>, return <num2> characters.

&UPPer <str> Uppercase <str>
&LOWer <str> lowercase <str>
&CHR <num> return a string with the character represented by
ascii code <num>

>C returns a string of characters containing a EMACS command
input from the user

>K return a string containing a single keystroke from the user

&ENV <str> If the operating system is capable, this returns the
environment string associated with <str>

&BIND <str> return the function name bound to the keystroke <str>

&XLATE <str1> <str2> <str3>&FINd <str> Find the named file <str>
along the path and return its full file specification or an empty
string if none exists

&TRIM <str> Trim the trailing whitespace from a
string

Logical Testing functions: (returns <log>)

&NOT <log> Return the opposite logical value
&AND <log1> <log2> Returns TRUE if BOTH logical arguments are
TRUE

&OR <log1> <log2> Returns TRUE if either argument is TRUE

&EQUal <num> <num> If <num> and <num> are numerically equal,
return TRUE &LESs <num1> <num2> If <num1> is less than <num2>,
return TRUE.

&GREater <num1> <num2> If <num1> is greater than, or equal to
<num2>, return TRUE.

&SEQual <str1> <str2> If the two strings are the same, return
TRUE.

&SLEss <str1> <str2> If <str1> is less alphabetically than
<str2>, return TRUE.

&SGReater <str1> <str2> If <str1> is alphabetically greater than
or equal to <str2>, return TRUE. &EXIst <str> Does the named
file <str> exist?

Special Functions:

&INDirect <str> Evaluate <str> as a variable.

This last function deserves more explanation. The &IND
function evaluates its argument, takes the resulting string, and
then uses it as a variable name. For example, given the
following code sequence:

 ; set up reference table

 set %one "elephant"
 set %two "giraffe"

 set %three "donkey"

 set %index "two"
 insert-string &ind %index
the string "giraffe" would have been inserted at the point in the
current buffer. This indirection can be safely nested up to
about 10 levels.

13.4 Directives

Directives are commands which only operate within an
executing macro, IE they do not make sense as a single command.
As such, they cannot be called up singly or bound to keystroke.
Used within macros, they control what lines are executed and in
what order.

Directives always start with the exclamation mark (!)
character and must be the first thing placed on a line.
Directives executed interactively (via the execute-command- line
command) will be ignored.

13.4.1 !ENDM Directive

This directive is used to terminate a macro being stored.
For example, if a file is being executed contains the text:

 ; Read in a file in view mode, and make the window red

 26 store-macro

 add-mode "view"
 add-mode "red"
 !endm

 write-message "[Consult macro has been loaded]"
only the lines between the store-macro command and the !ENDM
directive are stored in macro 26. Both numbered macros and named
procedures (via the store-procedure command) should be terminated
with this directive.

13.4.2 !FORCE Directive

When MicroEMACS executes a macro, if any command fails, the
macro is terminated at that point. If a line is preceded by a !
FORCE directive, execution continues whether the command succeeds
or not. For example:

 ; Merge the top two windows

 save-window ;remember what window we are at
 1 next-window ;go to the top window
 delete-window ;merge it with the second window
 !force restore-window ;This will continue regardless
 add-mode "red"

13.4.3 !IF, !ELSE, and !ENDIF Directives

This directive allows statements only to be executed if a
condition specified in the directive is met. Every line
following the !IF directive, until the first !ELSE or !ENDIF
directive, is only executed if the expression following the !IF
directive evaluates to a TRUE value. For example, the following
macro segment creates the portion of a text file automatically.
(yes believe me, this will be easier to understand then that last
explanation....)

 !if &sequal %curplace "timespace vortex"
 insert-string "First, rematerialize~n"
 !endif
 !if &sequal %planet "earth" ;If we have landed on earth...
 !if &sequal %time "late 20th century" ;and we are
then
 write-message "Contact U.N.I.T."
 !else
 insert-string "Investigate the
situation....~n"
 insert-string "(SAY 'stay here Sara')~n"
 !endif
 !else

 set %conditions @"Atmosphere conditions outside? "
 !if &sequal %conditions "safe"
 insert-string &cat "Go outside......" "~n"

 insert-string "lock the door~n"
 !else
 insert-string "Dematerialize..try somewhen else"
 newline
 !endif
 !endif

13.4.4 !GOTO Directive

Flow can be controlled within a MicroEMACS macro using the !
GOTO directive. It takes as an argument a label. A label
consists of a line starting with an asterisk (*) and then an
alphanumeric label. Only labels in the currently executing macro
can be jumped to, and trying to jump to a non-existing label
terminates execution of a macro. For example..

 ;Create a block of DATA statements for a BASIC program

 insert-string "1000 DATA "
 set %linenum 1000

 *nxtin
 update-screen ;make sure we see the changes
 set %data @"Next number: "
 !if &equal %data 0
 !goto finish
 !endif

 !if &greater $curcol 60
 2 delete-previous-character
 newline
 set %linenum &add %linenum 10
 insert-string &cat %linenum " DATA "
 !endif

 insert-string &cat %data ", "
 !goto nxtin

 *finish

 2 delete-previous-character

 newline

13.4.5 !WHILE and !ENDWHILE Directives

This directive allows you to set up repetitive tasks easily
and efficiently. If a group of statements need to be executed
while a certain condition is true, enclose them with a while
loop. For example,

 !while &less $curcol 70
 insert-string &cat &cat "[" #stuff "]"
 !endwhile

 places items from buffer "item" in the current line until the
cursor is at or past column 70. While loops may be nested and
can contain and be the targets of !GOTOs with no ill effects.
Using a while loop to enclose a repeated task will run much
faster than the corresponding construct using !IFs.

13.4.6 !BREAK Directive

This directive allows the user to abort out of the currently
most inner while loop, regardless of the condition. It is often
used to abort processing for error conditions. For example:

; Read in files and substitute "begining" with "beginning"

 set %filename #list
 !while ¬ &seq %filename "<end>"
!force find-file %filename
 !if &seq $status FALSE
 write-message "[File read error]"
 !break
 !endif
 beginning-of-file
 replace-string "begining" "beginning"
 save-file
 set %filename #list
 !endwhile

This while loop will process files until the list is
exhausted or there is an error while reading a file.

13.4.7 !RETURN Directive

The !RETURN Directive causes the current macro to exit,
either returning to the caller (if any) or to interactive mode.
For example:

 ; Check the monitor type and set %mtyp

 !if &sres "CGA"
 set %mtyp 1
 !return
 !else
 set %mtyp 2
 !endif

 insert-string "You are on a MONOCHROME machine!~n"

Chapter 14
Debugging MicroEMACS macros

When developing new macros, it is very convenient to be able
to trace their execution to find errors. The $debug environment
variable enables macro debugging. While this variable is TRUE,
emacs will stop at each macro line it intends to execute and
allow you to view it, and issue a number of different commands to
help determine how the macro is executing.

For example, we will step through the macro which toggles
the function key window off. The first thing to do, is to set
$debug, using the ^XA set command. Type ^XA and emacs will
prompt you on the command line with "Variable to set: ". Type in
"$debug" and press the enter key. Emacs will then ask "Value: ".
Type in "TRUE" (in capital letters) and press the enter key.

While macro debugging is enabled (as it is now) emacs will
report each time a variable is assigned a value, by displaying
the variable and its value on the command line. Right now,

((($debug <- TRUE)))
appears on the command line to tell you that $debug now has been
assigned the value of TRUE. Press the space bar to continue.

Now, lets try to debug a macro. Press function key 5 which
normally toggles the function key window. The first thing that
appears is:

<<<[Macro 01]:!if %rcfkeys>>>

At this point, emacs is waiting for a command. I t i s
prepared to see if the user variable %rcfkeys is TRUE, and
execute some lines if they are. Suppose we want to see the value
of this variable, type the letter "e" to evaluate an expression.
Emacs will prompt with "EXP: ". Type "%rcfkeys" followed by the
enter key. Emacs should then respond with "TRUE" to indicate
that the function key window is currently on screen.

Press the space bar to allow the !if directive to execute.
Emacs will decide that it is TRUE, and then display the next
macro command to execute.
<<<[Macro 01]:!goto rcfoff>>>

Notice emacs tells us what macro we are currently executing

(in this case, the macro bound to execute- macro-1). Press the
space bar again to execute the !goto directive.

<<<[Macro 01]:save-window>>>

Emacs is saving the position of the current window so that
it can attempt to return to it after it has brought up the
function key window.

 [...THIS CHAPTER IS NOT FINISHED...]

Chapter 15
Key Bindings, What they are and why

One of the features which makes MicroEMACS very adaptable is
its ability to use different keystrokes to execute different
commands. The process of changing the particular command a key
invokes is called rebinding. This allows us to make the editor
look like other popular editors and programs.

Each command in MicroEMACS has a name which is used for
binding purposes. For example, the command to move the cursor
down one page is called next-line and is normally bound to the ^N
key. If you decided that you also wanted to use the ^D key to
move the cursor down one line, you would use the M-K bind-to-key
command. EMACS would respond with ": bind-to-key " on the
command line and allow you to type in a command name. Then type
in the name of the command you want to change, in this case next-
line, followed by the <NL> key. EMACS will then wait for you to
type in the keys you want to activate the named function. Type a
single ^D. From now on, typing ^D will cause EMACS to move down
one line, rather than its original function of deleting
characters.

To find out the name of a command, consult the list of valid
EMACS commands in Appendix B. Also, you can use the ^X?
describe-key command to look up the name of a command. Type ^X?
and then the key to use that command, and EMACS will show you the
name of the command.

After you have experimented with changing your key bindings,
you may decide that you want to change some bindings permanently.
To have EMACS rebind keys to your pleasure each time you start
EMACS, you can add statements to the end of your startup file
(emacs.rc or .emacsrc depending on the system). For example,

 bind-to-key next-line ^D

Notice, that control D character in the startup file is
represented visibly as an uparrow key followed by a capital D.
To know how to represent any keys you want to bind, use the
describe-key command on the key, and use the sequence that is
displayed.

 bind-to-key split-current-window FN1

This example would make function key 1 activate thecommand
that splits the current window in two.

EMACS will let you define a large number of keys, but will
report "Binding table FULL!" when it runs out of space to bind
keys. Normally EMACS will allow up to 512 key bindings
(including approx. 300 originally bound keys).

If you want to get a current listing of all the commands and
the keys bound to them, use the describe- bindings command.
Notice, that this command is not bound to any keys!

Chapter 16
Command Completion

Some versions of MicroEMACS will allow you to abbreviate
buffer names, command names and file names as you enter them. To
use this, type in the first few characters of the name you wish,
and then hit either the space bar, the META key or the TAB key.
MicroEMACS will then attempt to look at the list of all the
available names and if there is only one which will fit, it will
choose that name. If there are several names that qualify, as
many characters as are common to ALL of them will be entered. If
there are no possible matches, the bell will ring to indicate
MicroEMACS can not complete the command.

For example, if you have several files in your current
directory with the following names:

 prog1.c
 prog1.obj
 prog1.exe
 prog1.doc
 program.one
 project.one
 test.c
 tes

and you enter the ^X^F find-file command, if you type 'p' and
then hit the space bar, EMACS will respond by typing the 'r' that
is common to all the above file names begining with 'p'. If you
then type 'ogr' and hit the tab key, EMACS will respond with
'am.one' and automatically hit the enter key for you.

If you were to instead type an 'a' and hit the space bar,
EMACS will beep, informing you that there is no possible match.

If you type a 'te' and hit the space bar, EMACS will then
type the following 's', but it will not automatically enter it
because it is possible you mean to get to the test.c file.

Buffer name, and command name completion is available in all
versions of MicroEMACS. File name completion is available on
UNIX BSD4.3, the Atari ST, the AMIGA and under MSDOS.

Appendix A
MicroEMACS Command Line Switches and Startup Files

When EMACS first executes, it always searches for a file,
called .emacsrc under most UNIX systems or emacs.rc on most other
systems which it will execute as EMACS macros before it reads in
the named source files. This file normally contains EMACS macros
to bind the function keys to useful functions and load various
useful macros. The contents of this file will probably vary from
system to system and can be modified by the user as desired.

When searching for this file, EMACS looks for it in this
order. First, it attempts to find a definition for "HOME" in the
environment. It will look in that directory first. Then it
searches all the directories listed in the "PATH" environment
variable. Then it looks through a list of predefined standard
directories which vary from system to system. Finally, failing
all of these, it looks in the current directory. This is also
the same method EMACS uses to look up any files to execute, and
to find it's help file EMACS.HLP.

On computers that call up EMACS via a command line process,
such as MSDOS and UNIX, there are different things that can be
added to the command line to control the way EMACS operates.
These can be switches, which are a dash ('-') followed by a
letter, and possible other parameters, or a startup file
specifier, which is an at sign '@' followed by a file name.

@<file> This causes the named file to be executed instead
of the standard emacs.rc file before emacs reads in any other
files. More than one of these can be placed on the command line,
and they will be executed in the order that they appear.

-C The following source files on the command line can be
changed (as opposed to being in VIEW mode). This is mainly used
to cancel the effects of the -v switch used previously in the
same command line.

-E This flag causes emacs to automatically run the startup
file "error.cmd" instead of emacs.rc. This is used by various C
compilers for error processing (for example, Mark Williams C).

-G<num> Upon entering EMACS, position the cursor at the
<num> line of the first file.

-I<var> <value> Initialize an EMACS variable with <value>.
This can be useful to force EMACS to start in a particular mode.
(For example, invoke EMACS with "emacs -i$sres VGA foo.bar" to
edit file foo.bar in VGA 50 line mode on an IBM-PC).

-K<key> This key tells emacs to place the source files in
CRYPT mode and read it in using <key> as the encryption key. If
no key is listed immediately after the -K switch, EMACS will
prompt for a key, and not echo it as it is typed.

-R This places EMACS in "restricted mode" where any commands
allowing the user to read or write any files other than the ones
listed on the command line are disabled. Also all commands
allowing the user access to the operating system are disabled.
This makes EMACS very useful as a "safe" environment for use
within other applications and especially used as a remote editor
for a BBS or electronic bulletin board system.

-S<string> After EMACS is started, it automatically searches
for <string> in the first source file.

-V This tells EMACS that all the following sources files on
the command line should be in VIEW mode to prevent any changes
being made to them.

Appendix B
MicroEMACS commands

Below is a complete list of the commands in EMACS,
the keys normally used to do the command, and what the
command does. Remember, on some computers there may also be
additional ways of using a command (cursor keys and special
function keys for example).

Command Binding Meaning

abort-command ^G This allows the user to
abort out of any command
that is waiting for input

add-mode ^XM Add a mode to the current
buffer

add-global-mode M-M Add a global mode for all
new buffers

apropos M-A List out commands whose
name contains the string
specified

backward-character ^B Move one character to the
left

begin-macro ^X(Begin recording a keyboard
macro

beginning-of-file M-< Move to the beginning of
the file in the current

buffer

beginning-of-line ^A Move to the beginning of
the current line

bind-to-key M-K Bind a key to a function

buffer-position ^X= List the position of the
cursor in the current

window on the command line

case-region-lower ^X^L Make a marked region all
lower case

case-region-upper ^X^U Make a marked region all
upper case

case-word-capitalizeM-C Capitalize the following
word

case-word-lower M-L Lower case the following
word

case-word-upper M-U Upper case the following
word

change-file-name ^XN Change the name of the
file in the current buffer

change-screen-size (none) Change the number of lines
of the screen currently

being used

change-screen-width (none) Change the number of
columns of the screen

currently being used

clear-and-redraw ^L Clear the physical screen
and redraw it

clear-message-line (none) Clear the command line

copy-region M-W Copy the currently marked
region into the kill

buffer

count-words M-^C Count how many words,
lines and characters are
in the current marked

region

ctlx-prefix ^X Change the key used as the
^X prefix

delete-blank-lines ^X^O Delete all blank lines
around the cursor

delete-buffer ^XK Delete a buffer which is
not being currently

displayed in a window

delete-mode ^X^M Turn off a mode in the
current buffer

delete-global-mode M-^M Turn off a global mode

delete-next-character ^D Delete the character
following the cursor

delete-next-word M-D Delete the word following
the cursor

delete-other-windows ^X1 Make the current window
cover the entire screen

delete-previous-character^H Delete the character to
the left of the cursor

delete-previous-word M-^H Delete the word to the
left of the cursor

delete-window ^X0 Remove the current window
from the screen

describe-bindings (none) Make a list of all legal
commands

describe-key ^X? Describe what command is
bound to a keystroke

sequence

detab-region ^X^D Change all tabs in a
region to the equivalent
spaces

display ^XG Prompts the user for a
variable and displays its
current value

dump-variables none Places into a buffer the
current values of all

environment and user
variables

end-macro ^X) stop recording a keyboard
macro

end-of-file M-> Move cursor to the end of
the current buffer

end-of-line ^E Move to the end of the
current line

entab-region ^X^E Change multiple spaces to
tabs where possible

exchange-point-and-mark ^X^X Move cursor to the last
marked spot, make the

original position be
marked

execute-buffer (none) Execute a buffer as a
macro

execute-command-line (none) Execute a line typed on
the command line as a

macro command

execute-file (none) Execute a file as a macro

execute-macro ^XE Execute the keyboard macro
(play back the recorded

keystrokes)

execute-macro-<n> (none) Execute numbered macro <N>
where <N> is an integer

from 1 to 40

execute-named-command M-X Execute a command by name

execute-procedure M-^E Execute a procedure by
name

execute-program ^X$ Execute a program directly
(not through an

intervening shell)

exit-emacs ^X^C Exit EMACS. If there are
unwritten, changed buffers
EMACS will ask to confirm

fill-paragraph M-Q Fill the current paragraph

filter-buffer ^X# Filter the current buffer
through an external filter

find-file ^X^F Find a file to edit in the
current window

forward-character ^F Move cursor one character
to the right

goto-line M-G Goto a numbered line

goto-matching-fence M-^F Goto the matching fence

grow-window ^X^ Make the current window
larger

handle-tab ^I Insert a tab or set tab
stops

hunt-forward A-S Hunt for the next match of
the last search string

hunt-backward A-R Hunt for the last match of
the last search string

help M-? Read EMACS.HLP into a
buffer and display it

i-shell ^XC Shell up to a new command
processor

incremental-search ^XS Search for a string,
incrementally

insert-file ^X^I insert a file at the
cursor in the current file

insert-space ^C Insert a space to the
right of the cursor

insert-string (none) Insert a string at the
cursor

kill-paragraph M-^W Delete the current
paragraph

kill-region ^W Delete the current marked
region, moving it to the
kill buffer

kill-to-end-of-line ^K Delete the rest of the
current line

list-buffers ^X^B List all existing buffers

meta-prefix <ESC> Key used to precede all
META commands

mouse-move-down MSa
mouse-move-up MSb

mouse-resize-screen MS1

mouse-region-down MSe

mouse-region-up MSf

move-window-down ^X^N Move all the lines in the
current window down

move-window-up ^X^P Move all the lines in the
current window up

name-buffer M-^N Change the name of the
current buffer

narrow-to-region ^X< hides all text not in the
current region

newline ^M Insert a <NL> at the
cursor

newline-and-indent ^J Insert a <NL> at the
cursor and indent the new
line the same as the

preceding line

next-buffer ^XX Bring the next buffer in
the list into the current
window

next-line ^N Move the cursor down one
line

next-page ^V Move the cursor down one
page

next-paragraph M-N Move cursor to the next
paragraph

next-window ^XO Move cursor to the next

window

next-word M-F Move cursor to the
beginning of the next word

nop (none) Does nothing
open-line ^O Open a line at the cursor

overwrite-string (none) Overwrite a string at the
cursor

pipe-command ^X@ Execute an external
command and place its

output in a buffer

previous-line ^P Move cursor up one line

previous-page ^Z Move cursor up one page

previous-paragraph M-P Move back one paragraph

previous-window ^XP Move the cursor to the
last window

previous-word M-B Move the cursor to the
beginning of the word to
the left of the cursor

print (none) Display a string on the
command line (a synonym to
write-message)

query-replace-string M-^R Replace all of one string
with another string,

interactively querying the
user

quick-exit M-Z Exit EMACS, writing out
all changed buffers

quote-character ^Q Insert the next character
literally

read-file ^X^R Read a file into the
current buffer

redraw-display M-^L Redraw the display,

centering the current line

resize-window ^XW Change the number of lines
in the current window

restore-window (none) Move cursor to the last
saved window

replace-string M-R Replace all occurrences of
one string with another

string from the cursor to
the end of the buffer

reverse-incremental-search ^XR Search backwards,
incrementally

run M-^E Execute a named procedure

save-file ^X^S Save the current buffer if
it is changed

save-window (none) Remember current window
(to restore later)

scroll-next-up M-^Z Scroll the next window up

scroll-next-down M-^V Scroll the next window
down

search-forward ^S Search for a string

search-reverse ^R Search backwards for a
string

select-buffer ^XB Select a buffer to display
in the current window

set ^XA Set a variable to a value

set-encryption-key M-E Set the encryption key of
the current buffer

set-fill-column ^XF Set the current fill
column

set-mark Set the mark

shell-command ^X! Causes an external shell
to execute a command

shrink-window ^X^Z Make the current window
smaller

source (none) Execute a file as a macro

split-current-window ^X2 Split the current window
in two

store-macro (none) Store the following macro
lines to a numbered macro

store-procedure (none) Store the following macro
lines to a named procedure

transpose-characters ^T Transpose the character at
the cursor with the

character to the left

trim-region ^X^T Trim any trailing white
space from a region

unbind-key M-^K Unbind a key from a
function

universal-argument ^U Execute the following
command 4 times

unmark-buffer M-~ Unmark the current buffer
(so it is no longer

changed)

update-screen (none) Force a screen update
during macro execution

view-file ^X^V Find a file,and put it in
view mode

widen-from-region ^X> restores hidden text (see
narrow-to-region)

wrap-word (none) Wrap the current word,
this is an internal

function

write-file ^X^W Write the current buffer
under a new file name

write-message (none) Display a string on the
command line

yank ^Y yank the kill buffer into
the current buffer at the

cursor

Appendix C
MicroEMACS Bindings

Below is a complete list of the key bindings used in
MicroEMACS. This can be used as a wall chart reference for
MicroEMACS commands.

 Default Key Bindings for MicroEmacs 3.10

^A Move to start of line ESC A Apropos (list some
 commands)
^B Move backward by characters ESC B Backup by words
^C Insert space ESC C Initial capitalize word
^D Forward delete ESC D Delete forward word
^E Goto end of line ESC E Reset Encryption Key
^F Move forward by characters ESC F Advance by words
^G Abort out of things ESC G Go to a line
^H Backward delete
^I Insert tab/Set tab stops
^J Insert <NL>, then indent
^K Kill forward ESC K Bind Key to function
^L Refresh the screen ESC L Lower case word
^M Insert <NL> ESC M Add global mode
^N Move forward by lines ESC N Goto End paragraph
^O Open up a blank line
^P Move backward by lines ESC P Goto Begining of
 paragraph
^Q Insert literal ESC Q Fill current paragraph
^R Search backwards ESC R Search and replace
^S Search forward ESC S Suspend (BSD only)
^T Transpose characters
^U Repeat command four times ESC U Upper case word
^V Move forward by pages ESC V Move backward by pages
^W Kill region ESC W Copy region to kill
 buffer
^Y Yank back from killbuffer ESC X Execute named command
^Z Move backward by pages ESC Z Save all buffers and
 exit

ESC ^C Count words in region ESC ~ Unmark current buffer
ESC ^E Execute named procedure
ESC ^F Goto matching fence ESC ! Reposition window
ESC ^H Delete backward word ESC < Move to start of buffer
ESC ^K Unbind Key from function ESC > Move to end of buffer
ESC ^L Reposition window ESC . Set mark

ESC ^M Delete global mode ESC space Set mark
ESC ^N Rename current buffer ESC rubout Delete backward
 wordESC ^R Search & replace w/query rubout Backward delete
ESC ^S Source command file
ESC ^V Scroll next window down
ESC ^W Delete Paragraph
ESC ^X Execute command line
ESC ^Z Scroll next window up

^X < Narrow-to-region ^X ? Describe a key
^X > Widen-from-region ^X ! Run 1 command in a shell
^X = Show the cursor position ^X @ Pipe shell command to
 buffer
^X ^ Enlarge display window ^X # Filter buffer through shell
 filter
^X 0 Delete current window ^X $ Execute an external program
^X 1 Delete other windows ^X (Begin macro
^X 2 Split current window ^X) End macro
^X A Set variable value
^X ^B Display buffer list ^X B Switch a window to a buffer
^X ^C Exit MicroEMACS ^X C Start a new command
 processor
^X ^D Detab line ^X D Suspend MicroEMACS (BSD4.2
 only)
^X ^E Entab line ^X E Execute macro
^X ^F Find file ^X F Set fill column
^X ^I Insert file
^X K Delete buffer
^X ^L Lower case region
^X ^M Delete Mode ^X M Add a mode
^X ^N Move window down ^X N Rename current filename
^X ^O Delete blank lines ^X O Move to the next window
^X ^P Move window up ^X P Move to the previous window
^X ^R Get a file from disk ^X R Incremental reverse search
^X ^S Save current file ^X S Incremental forward search
^X ^T Trim line (Incremental search
^X ^U Upper case region not always available)
^X ^V View file
^X ^W Write a file to disk ^X W resize Window
^X ^X Swap "." and mark ^X X Use next buffer
^X ^Z Shrink window ^X Z Enlarge display window

Usable Modes

WRAP Lines going past right margin "wrap" to a new line
VIEW Read-Only mode where no modifications are allowed
CMODE Change behavior of some commands to work better with C

EXACT Exact case matching on search strings
OVER Overwrite typed characters instead of inserting them
CRYPT Current buffer will be encrypted on write, decrypted on
read
MAGIC Use regular expression matching in searchesASAVE Save the
file every 256 inserted characters

WHITE/CYAN/MAGENTA/YELLOW/BLUE/RED/GREEN/BLACK Sets foreground
color

white/cyan/magenta/yellow/blue/red/green/black Sets background
color

Appendix D
Supported machines

The following table lists all the hardware/compilers for
which I currently support MicroEMACS. This is not exclusive of
all machines which MicroEMACS will run on, but I have either run
it myself, or had a first hand report of it running.

Hardware OS Compiler Comments
VAX 780 UNIX V5 native
UNIX V7 native
BSD 4.2 native job control supported
*VMS native

NCR Tower UNIX V5 native

IBM-RT PC BSD 4.3 native

HP9000 UNIX V5 native

Fortune 32:16 UNIX V7 native

IBM-PC MSDOS LATTICE 2.15 Large CODE/Large DATA
2.0 & 3.2 AZTEC 3.4e Large CODE/Large DATA

TURBO C v1.5 LARGE memory model
MSC 4.0
*MWC 86
SCO XENIX native

HP150 MSDOS Lattice 2.15 Function key labels
for the touch screen

HP110 MSDOS Lattice 2.15
Aztec 3.4e

*Data General 10
MSDOS Lattice 2.1 Texas Instruments
Professional

MSDOS Lattice 2.15

Amiga Intuition Lattice 3.03
Aztec 3.6

ST520 TOS Mark Williams C Spawns under MSH
Lattice 3.10 (no shell commands)

Systems to be supported (IE some code is already written:)
Macintosh Finder 5.0 Aztec

*means that I do not own or have access to the listed compiler
and/or machine and must rely upon others to help support it.

Appendix E
Function Keys

On the IBMPC, the ATARI ST, the Commodore AMIGA and UNIX now
support a set of machine independent bindings for function keys.
Below is a list of these bindings (not all of these are supported
on all systems).

Function keys in MicroEmacs

function Function ^function Alt-function
 f1) FN1 S-FN1 FN^1 A-FN1
 f2) FN2 S-FN2 FN^2 A-FN2
 f3) FN3 S-FN3 FN^3 A-FN3
 f4) FN4 S-FN4 FN^4 A-FN4
 f5) FN5 S-FN5 FN^5 A-FN5
 f6) FN6 S-FN6 FN^6 A-FN6
 f7) FN7 S-FN7 FN^7 A-FN7
 f8) FN8 S-FN8 FN^8 A-FN8
 f9) FN9 S-FN9 FN^9 A-FN9
f10) FN0 S-FN0 FN^0 A-FN0

home) FN< FN^<
CsUp) FNP FN^P
PgUp) FNZ FN^Z
CsLf) FNB FN^B
 5)
CsRt) FNF FN^F
 End) FN> FN^>
CsDn) FNN FN^N
PgDn) FNV FN^V
 Ins) FNC FN^C
 Del) FND FN^D

Appendix F
Machine Dependent Notes

This appendix lists some notes specific to individual
implementations of MicroEMACS. Every attempt has been made to
allow EMACS to be identical on all machines, but we have also
tried to take advantage of function keys, cursor keys, mice, and
special screen modes where possible.

F.1 IBM-PC/XT/AT and its clones

The IBM-PC family of computers is supported with a variety
of different display adapters. EMACS will attempt to discover
what adapter is connected and use the proper driver for it.
Below is a list of the currently supported video adapters:

Adapter $sres Original mode used
Monochrome Graphics Adapter MONO MONO
Color Graphics Adapter CGA CGA
Enhanced Graphics Adapter EGA CGA
Video Graphics Adapter VGA CGA

If a driver for a Microsoft compatible mouse is installed on
the system, EMACS will use the mouse in text mode and allow the
user all the standard mouse functions. The mouse cursor will
appear to be a block of color in the color opposite of it's
background.

EMACS also takes advantage of various function keys and the
keys on the keypad on an IBM-PC. The function keys are initially
not bound to any particular functions (except by the emacs.rc
startup file), but the keypad keys do default to the following:

Keypad key Function
Home beginning-of-file
CSRS UP previous-line
Pg Up previous-page
CSRS LEFT backward-character
CSRS RIGHT forward-character
End end-of-file
CSRS DOWN next-line
Pg Dn Next-page

All these special keys are indicated in EMACS macros by use
of the FN prefix. Below is a list of many of the keys and the
codes used to specify them. Also the codes may be gotten by
using the describe-key (^X ?) command on the suspect key.

Compiling under TURBO C

To compile MicroEMACS under TURBO C, set the TURBO
integrated environment with the following options:

 Memory model LARGE
 Floating point NONE
 Default char type UNSIGNED
 Data alignment BYTE
 Merge duplicate strings ON
 Standard stack frame off
 Test stack overflow off

 Optimize for SIZE
 Use register optimization ON
 Register optimization ON
 Jump optimization ON

 Initialize segments OFF
 Stack warnings OFF

 Names: Code names
Segment name *

F.2 HP 150

This machine from Hewlett Packard is very unusual for an
MSDOS machine. It has a touch screen and is very function key
oriented. An additional command, label- function-key allows you
to place labels on the on screen function key labels. A numeric
argument indicates which function key to label (one through
eight) and then the program prompts for a 16 character label,
which will be used as two lines of eight characters. To label
function key three with "save file" from a macro, you would use:

3 label-function-key "save file"

Notice the 4 spaces after "save". This forces "file" to begin on
the second line of the label.

F.3 Atari 520/1040ST

The ATARI ST family of computers have a dual personality.
They may use either a monochrome or a color screen. EMACS
supports two screen resolutions on each monitor.

NOTE
When you set MicroEMACS up on your system, please remember

to install it on the desktop as a GEM application. If you have
EMACS set as a TOS application, the mouse will not function
properly, and EMACS will alert you to this problem by beeping the
bell.

Monitor $sres size #color $palette format
Color LOW 40x25 16 000111222333444555666777
MEDIUM 80x25 4 000111222333
Mono HIGH 80x25 2 000
DENSE 80x50 2 000

The $palette environment variable can be used to change what
color is associated with each color name. With a color monitor,
each group of three digits indicates an octal number specifying
the RED, GREEN and BLUE levels of that color. Each color digit
can vary from 0 to 7. For example, the initial setting of
$palette in LOW resolution is:

000700070770007707077777

which broken up is:

000 700 070 770 007 707 077 777

which means:

000 Black
700 Red
070 Green
770 Yellow
007 Blue
707 Magenta
077 Cyan
777 White

Also the mouse buttons are bound to mouse functions as

described in the chapter about mice. The cursor keys and the
function keys are bound similarly to IBM-PC.

Files generated by EMACS on the ATARI ST have a single
return character at the end of each line, unlike the desktop
files which want to have two returns. This makes it display
files strangely from GEM's [SHOW] option, but makes the files
port to other computers much nicer. When compiling MicroEMACS,
the ADDCR symbol in estruct.h will cause emacs to generate line
ending sequences compatible with GEM.

Currently, when operating under the Mark Williams MSH
program, EMACS can shell out and perform external commands. This
capability will be added later for the Beckmeyer shell and under
GEMDOS.

F.4 Amiga 1000

The Commodore AMIGA 1000 version of MicroEMACS does fully
support the mouse, window resizing and the close gadget. It runs
in medium resolution, using the colors defined for the workbench.

Note about Compiling MicroEMACS
If you are compiling the sources on the AMIGA to produce an

executable image, and you are using the Lattice compiler, be sure
to give the CLI command 'STACK 40000' before compiling to make
sure the compiler has sufficient stack space to successfully
complete compilation.

F.5 UNIX V5, V7, and BSD4.[23]

MicroEMACS under UNIX utilizes the TERMCAP library to
provide machine independent screen functions. Make sure that
termcap is available and properly set on your account before
attempting to use MicroEMACS.

Under systems which support job control, you can use the ^XD
suspend-emacs command to place EMACS into the background. This
carries a much smaller overhead than bringing up a new shell
under EMACS. EMACS will properly redraw the screen when you
bring it back to the foreground.

If the symbol VT100 has been set to 1 in the estruct.h
options file, EMACS will recognize the key sequence <ESC>[as the
lead in sequence for the FN function key prefix.

With the addition of some very machine/operating system
specific code, EMACS can prevent two or more people frommodifying
the same file at the same time. The upper level of a set of
functions to provide file locking exist in the source file
LOCK.C. It requires two machine specific functions written and
linked into EMACS for it to operate properly.

 char *dolock(fname)

 char *fname;

 dolock() locks a file, preventing others from modifying it. If
it succeeds, it returns NULL, otherwise it returns a pointer to a
string in the form "LOCK ERROR: explanation".

 char *undolock(fname)

 char *fname;

 undolock() unlocks a file, allowing others to modifying it.
If it succeeds, it returns NULL, otherwise it returns a pointer
to a string in the form "LOCK ERROR: explanation".

F.6 DEC VMS operating system

TERMINALS

MicroEMACS uses the capabilities of VMS SMG, and should work
with any terminal that is defined in SMGTERMS.TXT or
TERMTABLE.TXT. (See your SMG manual for more information.) Full
keyboard support, with function keys and everything, is provided
for VT100 and VT200 series compatible terminals. Mouse support
is provided for the VSII workstation's VT220 terminal emulator,
and other terminal emulators that use the same escape sequences
for mouse control. (There is some partial support for the BBN
BitGraph mouse sequences in the sources, but this is not yet
complete.) Terminals may have up to 100 lines and 160 columns.

KEYBOARD

The VMS version understands the LK201 functions of VT200
series, vt300 series, and compatible terminals and terminal
emulators, and allows you to bind to them as function keys. In
addition, the VT100 numeric keypad, in application mode, is
available as function keys. MicroEMACS does not, however, put

the keypad into application mode for you. This is done by
issuing the command "SET TERM /APPLICATION" before entering
MicroEMACS.
VT200 keys

F6 = FN^Q F7 = FN^R F8 = FN^S F9 = FN^T F10 = FN^U

F11 = FN^W F12 = FN^X F13 = FN^Y F14 = FN^Z HELP = FN^\

DO = FN^] F17 = FN^_ F18 = "FN " F19 = FN! F20 = FN"

FIND = FN^A INSERT = FN^B REMOVE = FN^C SELECT = FN^D PREV =FN^E

NEXT = FN^F

VT100 and VT200 Arrow keys

Up = FNA Down = FNB Right = FNC Left = FND

VT100 and VT200 numeric keypad in SET TERM /APPLICATION mode

PF1 = FNP9 PF2 = FNQ PF3 = FNR PF4 = FNS
7 = FNw 8 = FMx 9 = FNy - = FNm
4 = FNt 5 = FNu 6 = FNv , = FNl
1 = FNq 2 = FNr 3 = FNs ENTER = FNM

0 = FNp . = FNn

WARNING

The VMS version contains code for interpreting function keys
that are sent as Ansi sequences that begin with the ESC
character. Because of this, MicroEMACS cannot process an
incoming ESC until it knows what character follows it. This can
cause problems with terminating search and replace strings. If
you use ESC as the meta-prefix character (which is the default)
you must type one additional keystroke following ESC before emacs
will recognize that you have edited the search command prompt,
and are continuing. (The additional character is processed
normally be MicroEMACS, it is NOT discarded.)

Flow control

Some terminals will require the use of XON/XOFF flow control
when used with MicroEMACS. When XON/XOFF flow control is used,
you will not be able to use functions bound to ^S or ^Q, and
should use bind-to-key to put these functions on other keys.

MicroEMACS does not change the flow control characteristics of
your terminal line while it is running. If your terminal
requires flow control, you should:

$ SET TERM/HOSTSYNC/TTSYNC

before entering MicroEMACS. If you are on a VSII emulated
workstation terminal, are using the SSU multi- session protocol
(VT330 and VT340 with SSU enabled), or are certain that your
terminal does not require XON/XOFF flow control, you should

$ SET TERM /HOSTSYNC/NOTTSYNC

This will allow you to use ^S and ^Q for MicroEMACS
commands. Note that if you are using a VSII with VWS V3.2 or
later, you must leave the /HOSTSYNC enabled in order for the
cross/session cut and paste capability to work properly.
Search List for EMACS.RC

VMS MicroEMACS will first search logical name
MICROEMACS$LIB:, and then "sys$sysdevice:[vmstools]" when looking
for startup files or help files.

Please use MICROEMACS$LIB:, and allow the secondary search
of [vmstools] to become archaic. If desired, MICROEMACS$LIB may
be defined to be a VMS search list that first searches a user
directory, and then a system directory.

Generally, you should create a private directory where you
keep all your .CMD files, and in your LOGIN.COM $DEFINE a logical
name to point to this area.

Using MicroEMACS with VMS MAIL and NOTES

There are two ways of using MicroEMACS with MAIL and NOTES.
The first way requires the cooperation of your system manager,
but is faster and less taxing on system resources. The second
way can be done by any random user that has PRCLM quota that is
greater than 1, but it creates a new subprocess each time
MicroEMACS is called up from the application, and is therefore
slower to invoke and more demanding on system resources.
Obviously, the first way is recommended.

First way

1. $ SET PROC/PRIV=ALL
2. $ Copy MESHR.EXE SYS$SHARE:MESHR.EXE/PROT=WO:RE

3. $ INSTALL :== $INSTALL
4. $ INSTALL/COMMAND ADD SYS$SHARE:MESHR.EXE

Step 4, and possibly step 3, must be incorporated intothe
system-wide startup command file, usually
SYS$MANAGER:SYSTARTUP.COM, so that MicroEMACS will be installed
each time the system boots. Note that the filename MUST be
"MESHR.EXE".

5. $ DEFINE MAIL$EDIT CALLABLE_ME

Step 5 must be added to the LOGIN.COM of each user that
wishes to have MicroEMACS as their MAIL editor. Additionally,
they may wish to have the line $ ME :== SYS$SHARE:MESHR.EXE,
which will allow them to use the "ME" command for invoking
MicroEMACS from DCL.

6. $ NOTES
NOTES> SET PROFILE/EDIT=(ME,CALL)

Step 6 must be performed by each user that wishes to have
MicroEMACS as their NOTES editor.

NOTE:
If you already have a version of MicroEMACS installed, and

you wish to install a new version in a running system, you must
REMOVE the old image and INSTALL the new one before MAIL or NOTES
will recognize it. To perform the upgrade, use following
sequence of commands:

$ install :== $install
$ set proc /priv=all

$ install/command remove sys$share:meshr.exe
$ copy meshr.exe sys$share:/log/prot=wo:re
$ install/command add sys$share:meshr.exe

Second way

In the event that you cannot get your system manager to
INSTALL MicroEMACS as known image, you can use the following
technique:

1. In MICROEMACS$LIB:MEMAIL.COM, put the following command file:

$! Use on VAX/VMS as MAIL$EDIT for using MicroEMACS as mail

editor.
$ if "''P1'" .NES. "_NL:" then if "''P1'" .NES. "" then copy
'P1' 'P2'
$ define/user sys$input sys$output
$ me 'P2'
$ exit
This file may have come with your MicroEMACS kit.

2. In your LOGIN.COM, put the following lines:

$ me :== $MICROEMACS$LIB:MESHR.EXE ! Assumes meshr.exe is there
$ define mail$edit microemacs$lib:me_edit.com

3. In NOTES, give the command

NOTES> SET PROFILE/EDIT=(@MicroEMACS$lib:me_edit.com,SPAWN)

Building MicroEMACS for VMS

The configuration options are set in file estruct.h:

- Under the category of "Machine/OS definitions", set VMS to "1"
and all others to "0".

- Under "Compiler definitions", set all selections to "0".
Selecting VMS implies that you are using VAXC.

- Under "Special keyboard definitions", be sure "VT100" is set to
"0". This option is not required for the VMS version, it is for
versions linked with ANSI terminal support. VMSVT already
handles the special characteristics of Ansi keyboards.

- Under "Terminal Output definitions", set VMSVT to "1" and all
others to "0".

- Under "Configuration options", you may select as you wish, with
the following notes:

 - COLOR support does not exist for VMS, even when using
color workstations.

 - MOUSE support should be enabled if you have any VSII
workstations

If you have MMS, you can use the supplied DESCRIP.MMS to
build MicroEMACS. If you do not have MMS, simply compile each
module with "CC", and link with the command:

 $ LINK MESHR/OPTION/SHARE

Note that the executable filename must end in "SHR" in order
for MicroEMACS to be used as a callable editor from MAIL or
NOTES. (Method 1 above.)

If you edit any of the Emacs sources, note that any global
or external data must be declared as "noshare" in order for the
VMS callable editor support to work properly. This applies to
all global data used in the VMS version, but not to routines or
to "static "data. The "noshare" declaration is #define'd away on
non-VMS systems. If you fail to do this, VMS will not allow you
to INSTALL MicroEMACS as a sharable library.

Appendix G
Mode Flags

The two environment variables, $cmode and $gmode, contain a
number the corresponds to the modes set for the current buffer
and the editor as a whole. These are encoded as the sum of the
following numbers for each of the possible modes:

WRAP 1 Word wrap
CMODE 2 C indentation and fence match
SPELL 4 Interactive spell checking (Not Implemented
 Yet)
EXACT 8 Exact matching for searches
VIEW 16 Read-only buffer
OVER 32 Overwrite mode
MAGIC 64 Regular expressions in search
CRYPT 128 Encryption mode active
ASAVE 256 Auto-save mode

So, if you wished to set the current buffer to have CMODE,
EXACT, and MAGIC on, and all the others off, you would add up the
values for those three, CMODE 2 + EXACT 8 + MAGIC 64 = 74, and
use a statement like:

 set $cmode 74

or, use the binary or operator to combine the different modes:

 set $cmode &bor &bor 2 8 64

Internal Flags

Some of the ways EMACS controls its internal functions can
be modified by the value in the $gflags environment variable.
Each bit in this variable will be used to control a different
function.

GFFLAG 1 If this bit is set to zero, EMACS will not
automatically switch to the buffer of the first file after
executing the startup macros.

Current buffer flags

The $cbflags environment variable allows the user to modify
some of the characteristics of the current buffer. The various

characteristics are encoded as the sum of thefollowing numbers:

BFINVS 1 Internal invisible buffer
BFCHG 2 Changed since last write
BFTRUNC 4 buffer was truncated when read
BFNAROW 8 buffer has been narrowed

Only the invisible and changed flags can be modified by
setting the $cbflags variable. The truncated file and narrowed
flags are read only.

